1. Compute $\int x^{2}(3-x) d x$

$$
=\int\left(3 x^{2}-x^{3}\right) d x=x^{3}-\frac{1}{4} x^{4}+c
$$

2. Compute $\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x=\int\left(9 x^{\frac{1}{2}}-3 \sec x \tan x\right) d x$

$$
\begin{aligned}
& =9 \cdot \frac{2}{3} x^{\frac{3}{2}}-3 \sec x+c \\
& =6 x^{3 / 2}-3 \sec x+c
\end{aligned}
$$

3. Find an antiderivative of $f(x)=\frac{1}{x^{2}}$ that does not have the form $-1 / x+C$.

$$
F(x)= \begin{cases}-\frac{1}{x}+10 & \text { for } x>0 \\ -\frac{1}{x}+\pi & \text { for } x<0\end{cases}
$$

4. Snow is falling on my garden at a rate of

$$
A(t)=10 e^{-2 t}
$$

(d) Find and internet $A(l)$.

$$
\begin{aligned}
& f(1) . \\
& A(1)=10 e^{-2} \approx 1.35 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

(a) If $m(t)$ is the total mass of snow on my garden, how are $m(t)$ and $A(t)$ related to each other?

$$
m^{\prime}(t)=A(t)
$$

(b) What does $m(2)-m(0)$ represent?

The mass of snow that fell during the hour period

$$
\left(t=0, t_{0} t=2\right)
$$

(c) Find an antiderivative of $A(t)$.

$$
-5 e^{-2 t}
$$

(d) Compute the total amount of snow accumulation from $t=0$ to $t=1$.

$$
\begin{aligned}
\int_{0}^{1} 10 e^{-2 t} d t=-\left.5 e^{-2 t}\right|_{0} ^{1}=-5 e^{-2}-(-5) & =5\left(1-e^{-2}\right) \\
& =4.32 \mathrm{~kg}
\end{aligned}
$$

(e) Compute the total amount of snow accumulation from $t=0$ to $t=2$.

$$
\int_{0}^{2} 10 e^{-2 t} d t=-\left.5 e^{-2 t}\right|_{0} ^{2}=-5 e^{-4}+5 \approx 4.91 \mathrm{~kg}
$$

(f) From the information given so far, can you compute $m(2)$?

No. We don't know how much snow there was before $t=0$.
(g) Suppose $m(0)=9$. Compute $m(1)$ and $m(2)$.

$$
\begin{aligned}
& m(1)=9+4.32=13.32 \mathrm{~kg} \\
& m(2)=9+4.91=13.91 \mathrm{~kg}
\end{aligned}
$$

5. A airplane is descending. Its rate of change of height is $r(t)=-4 t+\frac{t^{2}}{10}$ meters per second.
(a) if $A(t)$ is the altitude of the airplane in meters, how are $A(t)$ and $r(t)$ related?

$$
A^{\prime}(t)=r(t)
$$

(b) What physical quantity does $\int_{1}^{3} r(t) d t$ represent? How much the plane's height changed in the 2 second interval from $t=1 t_{0} t=3$.
(c) Compute $A(3)-A(1)$. $\quad A(3)-A(1)=\int_{1}^{3} r(t) d t=\int_{1}^{3}\left(-4 t+\frac{1}{10} t^{2}\right) d t$

$$
=-2 t^{2}+\left.\frac{1}{30} t^{3}\right|_{1} ^{3}=\left(-2 \cdot 3^{2}+\frac{1}{30} 3^{3}\right)-\left(-2+\frac{1}{30}\right)=-15.13 \mathrm{~m}
$$

(d) What is the height of plane when $t=3$? We doit know.
6. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$.

$$
\int_{0}^{10}\left(1+t^{2}\right) d t=t+\left.\frac{1}{3} t^{3}\right|_{0} ^{10}=10+\frac{1}{3}(1000)=343 \text { tons }
$$

