323 From Friday: · Want to evaluate lim fire). X-7a If fb) is made of pieces that are known to be simple and well-behaved (no big jumps or vertical asymptotes) you can take the limit of each piece separately t put them all back together. [i.e. You can substitute in !] $\lim_{X \to 2} \frac{|x^2 + 5|}{|x^2 - 2|} = \frac{|3|(\lim_{X \to 2} x)||x_1 - x||}{|x_1 - 2|} + \lim_{X \to 2} \frac{|x_1 - x_2|}{|x_1 - x_2|} + \lim_{X \to 2} \frac{|x_1 - x_2|}{|x_1 - x_2|} + \lim_{X \to 2} \frac{|x_1 - x_2$ obsessive example: $= 1 3 \cdot 2 \cdot 2 + 5 = 1/7$ actually evaluating the limit. $\frac{\text{Practical-example: lim } \sqrt{3x^2+5} = \sqrt{3.2^2+5} = 1/7}{x-2}$ Cknown nothing functions happened

Cautionary example:

$$\lim_{X \to 2} \frac{xe^{X} - 2e^{X}}{X - 2} = \frac{2e^{2} - 2e^{2}}{2 - 2} = \frac{0}{0} e^{-nonsuse!}$$

$$\lim_{X \to 2} \frac{xe^{2} - 2e^{X}}{X - 2} = \frac{2e^{2} - 2e^{2}}{2 - 2} = \frac{0}{0} e^{-nonsuse!}$$

$$\lim_{X \to 2} \frac{1}{X - 2} = \frac{1}{2} \lim_{X \to 2} e^{X} = \frac{1}{0} e^{X} = \frac{1}{0} e^{X}$$

$$\lim_{X \to 2} \frac{1}{X - 2} = \lim_{X \to 2} e^{X} = \frac{1}{0} e^{X} = \frac{1}{0} e^{X}$$

$$\lim_{X \to 2} \frac{1}{X - 2} = \lim_{X \to 2} e^{X} = \frac{1}{0} e^{X}$$

$$\lim_{X \to 2} \frac{1}{X - 2} = \lim_{X \to 2} e^{X} = \frac{1}{0} e^{X}$$

$$\lim_{X \to 2} \frac{1}{1} \lim_{X \to 2} e^{X} = \frac{1}{0} e^{X}$$

$$\lim_{X \to 2} \frac{1}{1} \lim_{X \to 2} \to 2}$$

SECTION 2-3 EXAMPLES

1. Evaluate each limit. Show your work or explain your reasoning.

(a)
$$\lim_{x \to 8} (1 + \sqrt[3]{x})(2 - x^2) = (1 + \sqrt[3]{8})(2 - 8^2) = 3(-62) = -186$$

.

(b)
$$\lim_{x \to 4} \frac{x^2 - 4x}{x^2 - x - 12} = \lim_{X \to 4} \frac{x(x-4)}{(x-4)(x+3)} = \lim_{X \to 4} \frac{x}{x+3} = \frac{4}{4+3} = \frac{4}{7}$$

(We get $\stackrel{\circ}{\ominus}$ if we plug in.
So, must do some algebra)

(c)
$$\lim_{x \to 4} \frac{x^2}{x^2 - x - 12} = \lim_{x \to 4} \frac{x^2}{(x - 4)(x + 3)} = DN/E$$

[When you plug in,
you get 16. So,
expect an infinite
limit.]
(d)
$$\lim_{x \to -3} \frac{\frac{1}{3} + \frac{1}{x}}{x + 3} = \lim_{x \to -3} \left(\frac{1}{x + 3}\right) \left(\frac{1}{3} + \frac{1}{x}\right) = \lim_{x \to -3} \left(\frac{1}{x + 3}\right) \left(\frac{1}{3} + \frac{1}{x}\right) = \lim_{x \to -3} \left(\frac{1}{x + 3}\right) \left(\frac{3 + x}{3x}\right) = \lim_{x \to -3} \frac{1}{3x} = \frac{1}{9}$$

(e)
$$\lim_{x\to 0^-} \frac{|x|}{x} = \lim_{x\to 0^-} \frac{-x}{x} = \lim_{X\to 0^-} \frac{-1}{x} = -1$$

Since $x \to 0^-$, $x < 0$.
So $|x| = -x$.

(f)
$$\lim_{x \to 0} \frac{|x|}{x} = DNE$$

From (e) we know $\lim_{X \to 0^{-}} \frac{|x|}{x} = -1$.
But if $x \to 0^{+}$, $|x| = x$. So, $\lim_{X \to 0^{+}} \frac{|x|}{x} = \lim_{X \to 0^{+}} \frac{x}{x} = 1$

(g)
$$\lim_{x \to 5^{-}} \frac{3x - 15}{|5 - x|} = \lim_{x \to 5^{-}} \frac{3(x - 5)}{|x - 5|} = \lim_{x \to 5^{-}} \frac{3(x - 5)}{-(x - 5)} = \lim_{x \to 5^{-}} -3 = -3$$

just algebra.
algebra.
(g) $\lim_{x \to 5^{-}} \frac{3(x - 5)}{|x - 5|} = \lim_{x \to 5^{-}} \frac{3(x - 5)}{-(x - 5)} = \lim_{x \to 5^{-}} -3 = -3$

(h)
$$\lim_{x \to \pi} \frac{2x}{\tan^2 x} = +\infty$$

As $x \to \pi$, $2x > 0$ and $+an^2 x \to 0^+$.