From Friday:

- Want to evaluate $\lim _{x \rightarrow a} f(x)$.

If $f(x)$ is made of pieces that are known to be simple and well- behaved (no big jumps or vertical asymptotes) you can tale the limit of each piece separately α put them all back together.
[ie. You can substitute in!]
Obsessive example: $\lim _{x \rightarrow 2} \sqrt{3 x^{2}+5}=\sqrt{3 \cdot\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)+\lim _{x \rightarrow 2} 5}$

$$
=\sqrt{3 \cdot 2 \cdot 2+5}=\sqrt{17}
$$

actually evaluating the limit.
practical example: $\lim _{x \rightarrow 2} \sqrt{3 x^{2}+5}=\sqrt{3 \cdot 2^{2}+5}=\sqrt{17}$

cautionary example:

$$
\begin{array}{r}
\lim _{x \rightarrow 2} \frac{x e^{x}-2 e^{x}}{x-2}=\frac{2 e^{2}-2 e^{2}}{2-2}=\frac{0}{0} \text { \& nonsense! } \\
\text { Start over. } \\
\text { (Dunt make staff up!) }
\end{array}
$$

$$
\lim _{x \rightarrow 2} \frac{(x-2)\left(e^{x}\right)}{x-2}=\lim _{x \rightarrow 2} e^{x}=e^{2}
$$

¿ is this fair? Why?

SECTION 2-3 EXAMPLES

1. Evaluate each limit. Show your work or explain your reasoning.

[Each "piece" is simple. Nothing is undefined.]
(b) $\lim _{x \rightarrow 4} \frac{x^{2}-4 x}{x^{2}-x-12}=\lim _{x \rightarrow 4} \frac{x(x-4)}{(x-4)(x+3)}=\lim _{x \rightarrow 4} \frac{x}{x+3}=\frac{4}{4+3}=\frac{4}{7}$
(we get $\frac{0}{0}$ if we plug in.
So, must do some algebra)
(c) $\lim _{x \rightarrow 4} \frac{x^{2}}{x^{2}-x-12}=\lim _{x \rightarrow 4} \frac{x^{2}}{(x-4)(x+3)}=D N E$
[When you plug in, you get $\frac{16}{0}$. So, expect an infinite limit.]

As $x \rightarrow 4^{+},(x-4)(x+3) \rightarrow 0^{+}$
As $x \rightarrow 4^{-},(x-4)(x+3) \rightarrow 0^{-}$
As $x \rightarrow 4, x^{2} \rightarrow 16>0$, always.
picture
(d) $\lim _{x \rightarrow-3} \frac{\frac{1}{3}+\frac{1}{x}}{x+3}=\lim _{x \rightarrow-3}\left(\frac{1}{x+3}\right)\left(\frac{1}{3}+\frac{1}{x}\right)=\lim _{x \rightarrow-3}\left(\frac{1}{x+3}\right)\left(\frac{3+x}{3 x}\right)=\lim _{x \rightarrow-3} \frac{1}{3 x}=\frac{-1}{9}$
et $\frac{0}{0}$. So, algebra.
(e) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1$

Since $x \rightarrow 0^{-}, x<0$.
So $|x|=-x$.
(f) $\lim _{x \rightarrow 0} \frac{|x|}{x}=$ DNE

From (e) we know $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$.
But if $x \rightarrow 0^{+}, \quad|x|=x$. So, $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1$
(g) $\lim _{x \rightarrow 5^{-}} \frac{3 x-15}{|5-x|}=\lim _{x \rightarrow 5^{-}} \frac{3(x-5)}{|x-5|}=\lim _{x \rightarrow 5^{-}} \frac{3(x-5)}{-(x-5)}=\lim _{x \rightarrow 5^{-}}-3=-3$ just
algebra \quad as $x \rightarrow 5^{-}, x-5<0$. So $|x-5|=-(x-5)$.
(h) $\lim _{x \rightarrow \pi} \frac{2 x}{\tan ^{2} x} \underset{\uparrow}{=}+\infty$
as $x \rightarrow \pi, 2 x>0$ and $\tan ^{2} x \rightarrow 0^{+}$.

