Section 4.5 Curve Sketching (Day 2)

1. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\frac{2}{x}+\ln (x) .
$$

(Note: $f^{\prime}(x)=\frac{x-2}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{4-x}{x^{3}}$)
(a) What is the function's domain?
(b) Does this function have any symmetry?
(c) Find a few choice values of x to evaluate the function at.
(d) What behaviour occurs for this function at $\pm \infty$?
(e) Does the function have any vertical asymptotes? Where?
(f) Find intervals where f is increasing/decreasing and identify critical points.
(g) Classify each critical point as a local min/max/neither.
(h) Find intervals where f is concave up/concave down and identify points of inflection
(i) Sketch the graph of the function
2. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=x \sqrt{4-x^{2}} . \quad \quad\left(\text { Note: } f^{\prime}(x)=\frac{2\left(2-x^{2}\right)}{\sqrt{4-x^{2}}} \text { and } f^{\prime \prime}(x)=\frac{-2 x^{3}}{\left(4-x^{2}\right)^{3 / 2}}\right)
$$

(a) What is the function's domain?
(b) Does this function have any symmetry?
(c) Find a few choice values of x to evaluate the function at.
(d) What behaviour occurs for this function at $\pm \infty$?
(e) Does the function have any vertical asymptotes? Where?
(f) Find intervals where f is increasing/decreasing and identify critical points.
(g) Classify each critical point as a local min/max/neither.
(h) Find intervals where f is concave up/concave down and identify points of inflection
(i) Sketch the graph of the function
3. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\frac{x}{\sqrt{9+x^{2}}} . \quad \quad\left(\text { Note: } f^{\prime}(x)=\frac{9}{\left(9+x^{2}\right)^{3 / 2}} \text { and } f^{\prime \prime}(x)=\frac{-27 x}{\left(9+x^{2}\right)^{5 / 2}}\right)
$$

(a) What is the function's domain?
(b) Does this function have any symmetry?
(c) Find a few choice values of x to evaluate the function at.
(d) What behaviour occurs for this function at $\pm \infty$?
(e) Does the function have any vertical asymptotes? Where?
(f) Find intervals where f is increasing/decreasing and identify critical points.
(g) Classify each critical point as a local min/max/neither.
(h) Find intervals where f is concave up/concave down and identify points of inflection
(i) Sketch the graph of the function

