Lecture Notes: Review of Chapters 3 \& 4

Summary of Topics

Chapter 3

- Recall Sections 1-6 involve derivative rules. This will not be explicitly tested.
- Sections 7 and 8 focus on applications of the derivative in science and particularly to exponential growth and decay. Position, velocity and acceleration were again discussed. The overall emphasis is on interpretation of the derivative in the context of an applied problem.
- Section 9 Related Rate Problems. In these problems you are always taking the derivative implicitly with respect to time and almost always seeking of find a rate of change at a particular instant.
- Section 10 Linear Approximations and Differentials. The crucial idea here is that the derivative can be used to estimate function-values or changes in function-values.
- Section11 we did not cover.

Chapter 4

- Section 1 make a careful study of the ideas of local/absolute maximum/minimum and the difference between an extreme value and where it occurs.
- Section 4.2 The Mean Value Theorem. Know, roughly, what it says and be able to draw a picture.
- Section 4.3 discussed how the sign of f^{\prime} and $f^{\prime \prime}$ can tell us things about f such as intervals on which f is increasing, decreasing, concave up, concave down, local/absolute extreme values.
- Section 4.4 involved L'Hôpital's Rule. Recall that before using this rule one should make sure it applies.
- Section 4.5 put a whole bunch of Calculus together to sketch a graph. In addition to topics from Section 1 and 2, we also included things like x - and y-intercepts, vertical and horizontal asymptotes, and the function's domain.
- Section 4.6 was not discussed.
- Section 4.7 involved Optimization. Recall that by this time we have a clear understanding of how the domain of the function may determine the techniques we use to determine the answer.
- Section 4.8 will be discussed at the end of the semester and will not appear on this midterm.
- Section 4.9 involves antiderivatives.

1. Find the domain of the function $f(x)=\frac{\sin (5 x)}{x^{2}+x}$ and identify any vertical or horizontal asymptotes. Justify your answer.
$f(x)=\frac{\sin (5 x)}{x(x+1)}$ domain: $(-\infty,-1) \cup(-1,0) \cup(0, \infty)$

$$
\text { HA. : } \lim _{x \rightarrow \infty} \frac{\sin (5 x)}{x(x+1)}=0 \text {. So } y=0
$$

V.A. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x^{2}+x} \stackrel{(4)}{=} \lim _{x \rightarrow 0} \frac{5 \cos (5 x)}{2 x+1}=\frac{5}{1} \neq+\infty$. So $x=0 N \sigma$ asymptote.
2. $f(x)=(x-4) \sqrt[3]{x}=x^{4 / 3}-4 x^{1 / 3} ; \quad f^{\prime}(x)=\frac{4(x-1)}{3 x^{2 / 3}} ; \quad f^{\prime \prime}(x)=\frac{4(x+2)}{9 x^{5} / 3}$.
(a) Find the critical numbers of $f(x)$.
$f^{\prime}=0$ when $x=1$
f^{\prime} under. when $x=0$
answer:- $x=0, x=1$
(b) Find the open intervals on which the function is increasing or decreasing.

-100 光, 10 世sanplets decreasing on $(-\infty, 0) \cup(0,1)$

$$
+
$$

(c) Classify all critical points - using the first derivative test.

local min at $x=1$
no local max $x=0$ is neither a I. min nor 1. max
(d) Classify all critical points - using the second derivative test.
$f^{\prime \prime}(0)$ undefined. (Test fails " \cap)
$f^{\prime \prime}(1)>0$ so $1 . \min$ at $x=1$.

$$
\lim _{x \rightarrow-1} \frac{\sin (5 x)}{x^{2}+x}= \pm \infty \text { since } \begin{aligned}
& \sin (5 x) \rightarrow \sin (-5) \\
& \text { and } x^{2}+x \rightarrow 0^{-1 /}
\end{aligned}
$$

So $x=-1$ is a vedical esysptete.
2. $f(x)=(x-4) \sqrt[3]{x}=x^{4 / 3}-4 x^{1 / 3} ; \quad f^{\prime}(x)=\frac{4(x-1)}{3 x^{2 / 3}} ; \quad f^{\prime \prime}(x)=\frac{4(x+2)}{9 x^{5 / 3}}$.
(e) Find the open intervals on which the function is concave up or concave down. $f^{\prime \prime}=0$ when $x=-2$ $f^{\prime \prime}$ under. when $x=0$

f is cup on $(-\infty,-2) \cup(0, \infty)$
and ccolown on

$$
(-2,0)
$$

(f) Find the inflection points.
inflation pontes at $(-2, \sqrt[{6 \sqrt{2}}]{ })$ and $(0,0)$

$$
\begin{aligned}
f(-2) & =-6(-2)^{1 / 3} \\
& =6 \sqrt[3]{2} \\
f(0) & =0
\end{aligned}
$$

3. Find the linearization of $f(x)=\sqrt{x}$ at $a=4$ and use it to estimate $\sqrt{4.1}$ and 3.8.

$$
\begin{aligned}
& f(x)=\sqrt{x}=x^{1 / 2} \quad \text { lineavizt in } \quad L(x)=2+\frac{1}{4}(x-4) \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& \sqrt{4.1} \approx 2+\frac{1}{4}(4.1-4)=2+\frac{1}{40}=\frac{81}{40} \\
& f(4)=2 \\
& \sqrt{3.8} \approx 2+\frac{1}{4}(3.8-4)=2-\frac{1}{20}=\frac{39}{40} \\
& f^{\prime}(4)=\frac{1}{4} \\
& y-2=\frac{1}{4}(x-4)
\end{aligned}
$$

4. Find the differential_ of $y=\sqrt{x}$ and use it to estimate how much y will change as x changes from

$$
\begin{aligned}
& y=x^{x / 2} \\
& d y=\frac{1}{2} x^{-1 / 2} d x
\end{aligned}
$$

estimate $\Delta y \approx \frac{1}{2}(4)^{1 / 2}\left(\frac{1}{10}\right)$

$$
=\frac{1}{40}
$$

5. Evaluate the following limits. Show your work.
(a) $\lim _{x \rightarrow 0} \frac{1+x-e^{x}}{\sin x} \leftarrow \frac{\boldsymbol{O}}{\boldsymbol{O}}$
(b) $\lim _{x \rightarrow \infty} x \ln \left(1+\frac{2}{x}\right)$ form $\infty \cdot 0$
(1) $\lim _{x \rightarrow 0} \frac{1-e^{x}}{\cos x}=\frac{0}{1}=0$

$$
=\lim _{x \rightarrow \infty} \frac{\ln \left(1+2 x^{-1}\right)}{x^{-1}}<\text { form } \frac{0}{0}
$$

(H)

$$
=\lim _{x \rightarrow \infty} \frac{2}{1+2 x^{-1}}=2
$$

