picture	property of f	how to recognize it
	f is <i>increasing</i> on (a, b) if $f(x_1) \ge f(x_2)$ for all x_1, x_2 in (a, b)	$f'(x) \ge 0$
\searrow	f is decreasing on (a, b) if $f(x_1) \le f(x_2)$ for all x_1, x_2 in (a, b)	$f'(x) \le 0$
or	<i>f</i> is <i>concave up</i> on (a, b) if $f'(x)$ is increasing on (a, b)	$f''(x) \ge 0$
or	<i>f</i> is <i>concave down</i> on (a, b) if $f'(x)$ is decreasing on (a, b)	$f''(x) \le 0$
	f has a <i>local maximum</i> at $x = c$ if $f(c) \ge f(x)$ for all x near c	First Derivative Test: $f'(c) = 0$ and f' changes from $+$ to $-$ at c
		Second Derivative Test: $f'(c) = 0$ and $f''(c) < 0$
	<i>f</i> has a <i>local minimum</i> at $x = c$ if $f(c) \le f(x)$ for all x near c	First Derivative Test: $f'(c) = 0$ and f' changes from $-$ to $+$ at c
		Second Derivative Test: $f'(c) = 0$ and $f''(c) > 0$
	<i>f</i> has an <i>inflection point</i> at $x = c$ if <i>f</i> changes concavity at <i>c</i>	$f'(c)$ has a local max or min \iff f''(c) = 0 and f'' changes sign at c

SECTION 4-3: HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH