Derivatives for Section 4.5 homework problems

Please use the derivatives given here as necessary to complete steps E. Intervals of Increase or Decrease, F. Local Maximum and Minimum Values, and G. Concavity and Points of Inflection. The derivatives here are already simplified - there is no need here (or ever!) to multiply or "foil" factors. [Note, there are 10 computed derivatives here that need to be essentially perfect in order to complete the problems.]
4.5.13: $\quad y=\frac{x}{x^{2}-4}, \quad y^{\prime}=-\frac{x^{2}+4}{\left(x^{2}-4\right)^{2}}, \quad y^{\prime \prime}=\frac{2 x\left(x^{2}+12\right)}{(x+2)^{3}(x-2)^{3}}$
4.5.15: $\quad y=\frac{x^{2}}{x^{2}+3}, \quad y^{\prime}=\frac{6 x}{\left(x^{2}+3\right)^{2}}, \quad y^{\prime \prime}=\frac{-18(x+1)(x-1)}{\left(x^{2}+3\right)^{3}}$
4.5.28:

$$
y=\frac{x}{\sqrt{x^{2}-1}}, \quad y^{\prime}=\frac{-1}{\left(x^{2}-1\right)^{3 / 2}}, \quad y^{\prime \prime}=\frac{3 x}{\left(x^{2}-1\right)^{5 / 2}}
$$

4.5.42:

$$
y=(1-x) e^{x}, \quad y^{\prime}=-x e^{x}, \quad y^{\prime \prime}=-(x+1) e^{x}
$$

