The Final Exam will be cumulative. The exam will be designed to be completable in 2 hours. Books, notes, calculators and other aids are not allowed. As with all assessments in this course, you are strongly encouraged to work some old Final Exams as practice.
Sample Problems

1. Given $f(x)=3 x-x^{2}$, find $f^{\prime}(x)$ using the definition of the derivative.
2. Find the equation of the line tangent to $y e^{x}+2=x^{2}+y^{2}$ at the point $(0,2)$.
3. Let $F(t)=\frac{20}{4+e^{-2 t}}$ model the population of fish in hundreds of fish, where time t is measured in years.
(a) Find and interpret $F(0)$.
(b) Find and interpret (in language your non-quantitative friends could understand) $\lim _{t \rightarrow \infty} F(t)$.
(c) Find $F^{\prime}(t)$. (HINT: You can check your answer with the one at the bottom of the page.)
(d) Find and interpret $F^{\prime}(0)$.
(e) Find and interpret (in language your non-quantitative friends could understand) $\lim _{t \rightarrow \infty} F^{\prime}(t)$.
(f) Give a rough sketch the graph of $F(t)$ given the information above.

HINT: $F^{\prime}(t)=\frac{40 e^{-2 t}}{\left(4+e^{-2 t}\right)^{2}}$
4. Let $f(x)=\frac{5 x^{2}}{1-\cos (x)}$.
(a) Find $\lim _{x \rightarrow 0} \frac{5 x^{2}}{1-\cos x}$
(b) Does $f(x)$ have a vertical asymptote at $x=0$? Explain
5. Let $g(x)=\frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$. Does $g(x)$ have any horizontal asymptotes? Justify your answer with a limit.
6. Complete two iterations of Newton's Method to estimate a solution to $x^{7}+4=0$. Use $x_{0}=-1$. (Note you may leave your second iteration in unsimplified form.)
7. Evaluate.
(a) $\int_{0}^{\pi / 4} \frac{\sec ^{2} t}{\tan (t)+1} d t$
(b) $\int_{0}^{8} \frac{3}{\sqrt{x+1}} d x$
8. A particle is moving with velocity $v(t)=2 t-\frac{1}{1+t^{2}}$ measured in meters per second.
(a) Find and interpret $v(0)$.
(b) Find the displacement for the particle from time $t=0$ to time $t=4$. Give units with your answer.
(c) If D is the distance the particle traveled over the interval $[0,4]$, is D larger or smaller or exactly the same as your answer in part (b)? Justify your answer.
(d) Assuming $s(0)=1$, find the position of the particle at any time t.

