More Sample Problems

1. A landscape architect wishes to enclose a rectangular garden on one side by a brick wall costing $\$ 30$ per foot and on the other three sides with a metal fence costing $\$ 10$ per foot. The area of the garden is to be $800 \mathrm{ft}^{2}$. What are the dimensions of the garden that minimize the cost of the fencing? (For full credit, you must justify your answer.)

2. The function $f(x)$ has been graphed below. The curve for $0<x<2$ is an upper half circle. Define a new function $g(x)$, as

$$
g(x)=\int_{0}^{x} f(s) d s
$$

Use the graph above to answer the questions below.
Note: Pay attention to whether question concerns the function f, f^{\prime}, g or g^{\prime}.
(a) What is the value of $f(0)$?
(b) What is the value of $g(3)$?
(c) What is the value of $g(-2)$?
(d) What is the value of $f^{\prime}(2)$?
(e) What is the value of $g^{\prime}(1)$?
3. Let $g(x)=\frac{e^{x}}{1+x}$. Note first and second derivatives are

$$
g^{\prime}(x)=\frac{x e^{x}}{(1+x)^{2}} \quad \text { and } \quad g^{\prime \prime}(x)=\frac{e^{x}\left(x^{2}+1\right)}{(1+x)^{3}} .
$$

Sketch the graph of $g(x)$. Label any asymptotes, x - and y-intercepts, local minimums and local maximums, and inflection points, if appropriate.

