1. The graph of a function f is shown below. Find the following: $(1, f(d))$
a) $f(1)$ and $f(5)$

$$
f(1)=3 ; \quad f(5) \approx-2 / 3
$$

b) the domain of f

Where is f defined? On the interval

$$
[0,7]
$$

c) the range of f

What y-values does f attain?

$$
[-2,3]
$$

d) For which value of x is $f(x)=4$? None!
e) Where is f increasing?

$$
[0,2] \cup\left[6 \frac{1}{3}, 7\right]
$$

2. Let $f(x)=3 x^{2}-x+2$. Find and simplify the following expressions. Are (b) and (c) different?
(a) $f(2)$

$$
f(2)=3(2)^{2}-2+2=3 \cdot 4=12
$$

(b) $f\left(a^{2}\right)$

$$
f\left(a^{2}\right)=3\left(a^{2}\right)^{2}-\left(a^{2}\right)+2=3 a^{4}-a^{2}+2
$$

$$
\begin{aligned}
& (\mathrm{c})[f(a)]^{2} \\
& (f(a))^{2}=\left(3 a^{2}-a+2\right)^{2}= \\
= & \left(3 a^{2}\right)\left(3 a^{2}-a+2\right)+\left(3 a^{2}\right)(-a)+\left(3 a^{2}\right)(2)+(-a)\left(3 a^{2}\right)+(-a)(-a)+(-a)(2) \\
+ & 2\left(3 a^{2}\right)+2(-a)+2(2)=9 a^{4}-3 a^{3}+6 a^{2}-3 a^{3}+a^{2}-2 a+6 a^{2}-2 a+4 \\
\Rightarrow & (d) \frac{f(a+h)-f(a)}{h}=9 a^{4}-6 a^{3}+13 a^{2}-4 a+4 \\
& f(a+h)-f(a) \\
& f\left(\left[3(a+h)^{2}-(a+h)+2\right]-\left[3 a^{2}-a+2\right]\right) \\
= & \frac{1}{h}\left(3\left(a^{2}+2 a h+h^{2}\right)-h-h+2 h-3 a^{2}+\alpha-2\right)=\frac{1}{4}\left[3 a^{2}+6 a h+3 h^{2}-h-3 h^{2}\right] \\
= & \frac{1}{h}\left(6 a h+3 h^{2}-h\right)=6 a+3 h-1
\end{aligned}
$$

3. Write a formula for the top half of the circle with center $(2,0)$ and radius 3 .

Circle is $(x-2)^{2}+y^{2}=3^{2}$
(check: when we put in 2, what do we get out?) So upper half-circle is

$$
y=\sqrt{3^{2}-(x-2)^{2}}
$$

4. Find the domain of each of the following functions. Use interval notation.
(a) $f(x)=\frac{1}{x^{2}-16} \quad 4$ Were asking the question: which \underline{x} values make the function be undefined?

$$
f(x)=\frac{1}{(x-4)(x+4)}
$$

\leftarrow We can't divide by zero!
So we must exclucle $x=4$ and $x=-4$.
domain is $(-\infty,-4) \cup(-4,4) \cup(4, \infty)$
As a picture:

(b) $g(x)=\ln (x-4)$

We know that $\ln (x)$ is defined fo $x>0$, so $\ln (x-4)$ is defined for $x \rightarrow 0$ $\Rightarrow x>4$.

~

So the domain is $(4, \infty)$
5. Graph the piecewise defined function.

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq-1 \\ x^{2} & \text { if } x>-1\end{cases}
$$

When $x \leq 1, \quad f(x)=x+1$, which is a line, passing through $(-1,0)$ with a slope of 1

When $x>-1, f(x)=x^{2}$
at $x=-1$, this would be $(-1,1)$
 but it doesnit quite get there!

