Transformation Review

1. Explain what each does to the original graph $y=f(x)$. (Assume $c>0$.)
(a) $f(x)+c$ Shifts of by c
(e) $c f(x)$ Scales by C 刁
(b) $f(x)-c$ Shifts \downarrow by c
(f) $f(c x)$ compresses by $c \longleftrightarrow$
(c) $f(x+c)$ Shifts \leftarrow by c
(g) $-f(x)$ flips \uparrow
(d) $f(x-c)$ shifts \longrightarrow by c
(h) $f(-x)$ flips \longleftrightarrow
2. Let $f(x)=\left\{\begin{array}{ll}2 & x \leq 1 \\ 3-x & x>1\end{array}\right.$. Graph each of the following using the ideas from \# 1 above.
(a) $f(x)$

(b) $f(x+1)$ Shift \leftarrow by 2

(c) $f(2 x)$ Compress by $2 \longleftrightarrow$

Check: at $x=2$

$$
f(2 x)=
$$

$$
3-4=-1
$$

(d) $-2 f(x) \quad f$ lip \downarrow and expand by $2 \uparrow$

Chicle: at $x=2,-2 f(x)=$

$$
-2(3-2)=-2
$$

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α.

$$
\begin{aligned}
& \sin (\alpha)=\frac{10}{\sqrt{116}}=\frac{5}{\sqrt{29}} \\
& \cos (\alpha)=\frac{4}{\sqrt{116}}=\frac{2}{\sqrt{29}} \\
& \tan (\alpha)=\frac{10}{4}=\frac{5}{2}
\end{aligned}
$$

and hypotenuse is $\sqrt{4^{2}+10^{2}}=\sqrt{116}=2 \sqrt{29} \quad \csc (\alpha)=\frac{\sqrt{116}}{10}=\frac{\sqrt{29}}{5}$

$$
\sec (\alpha)=\frac{\sqrt{116}}{4}=\frac{\sqrt{29}}{2}
$$

$$
\cot (\alpha)=\frac{4}{10}=\frac{2}{5}
$$

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of any three marked points, one of each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
(c) $\tan \left(\frac{-\pi}{4}\right)=\frac{-1 / \sqrt{2}}{1 / \sqrt{2}}=-1$ $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$

6. On the axes below, graph at least two cycles of $f(x)=\sin x, f(x)=\sin (x / 2)$. Label all x - and y-intercepts. $f(x)=\sin (x)$ $\begin{array}{ll}x \text {, } & \text { that } X \text { is not equal to } \\ \text { whir the } & 2 \pi k \\ \text { set of real } & \\ \text { numbers is } & \\ \text { denoted } \mathbb{R} & \end{array}$ $\begin{array}{ll}x \text {, } & \text { that } X \text { is not equal to } \\ \text { whir the } & 2 \pi k \\ \text { set of real } & \\ \text { numbers is } & \\ \text { denoted } \mathbb{R} & \end{array}$ $\begin{array}{ll}x \text {, } & \text { that } X \text { is not equal to } \\ \text { whir the } & 2 \pi k \\ \text { set of real } & \\ \text { numbers is } & \\ \text { denoted } \mathbb{R} & \end{array}$ $\begin{array}{ll}x \text {, } & \text { that } X \text { is not equal to } \\ \text { whir the } & 2 \pi k \\ \text { set of real } & \\ \text { numbers is } & \\ \text { denoted } \mathbb{R} & \end{array}$ $\begin{array}{ll}x \text {, } & \text { that } X \text { is not equal to } \\ \text { whir the } & 2 \pi k \\ \text { set of real } & \\ \text { numbers is } & \\ \text { denoted } \mathbb{R} & \end{array}$

7. (a) Use the graph of $f(x)=\sin (x)$ to solve $\sin (\mathrm{x})=1$ Need whee $\sin (x)=1 \Rightarrow$

$$
x=\frac{\pi}{2}+k(2 \pi) \underbrace{\text { for } r i^{i n t e g r s} k}_{k \in \mathbb{Z}}
$$

(b) Use the graph of $f(x)=\sin (x / 2)$ to determine the domain of $\mathrm{f}(\mathrm{x})=\csc (\mathrm{x} / 2)$

From the graph, we see that $\sin (x / 2)=0$ at integer multiples of 2π. There fore, the domain

here, we are expanding by $2(=$ compresion by $1 / 2)$ Check: at $x=\pi, \sin \left(\frac{1}{2} \cdot \pi\right)=\sin \left(\frac{\pi}{2}\right)=1$

