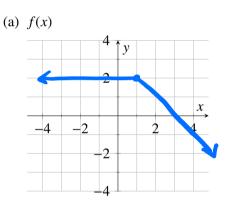
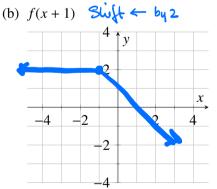
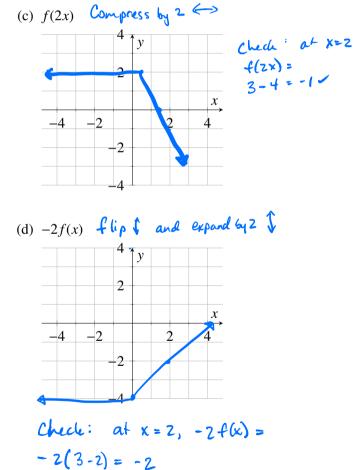
Transformation Review

- 1. Explain what each does to the *original* graph y = f(x). (Assume c > 0.)
 - (a) f(x) + cShifts f by c(e) cf(x)Scales by Cf(b) f(x) cShifts I by c(f) f(cx)Compresses by c(c)(c) f(x+c)Shifts \leftarrow by c(g) -f(x)flips f(d) f(x-c)Shifts -p by c(h) f(-x)flips \leftarrow

2. Let $f(x) = \begin{cases} 2 & x \le 1 \\ 3 - x & x > 1 \end{cases}$. Graph each of the following using the ideas from #1 above.

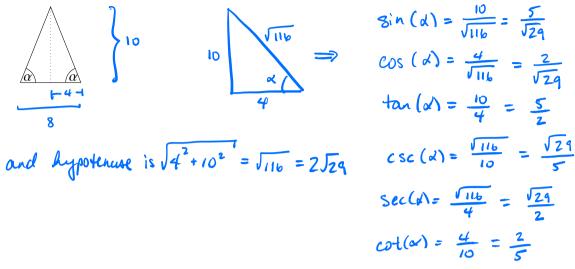




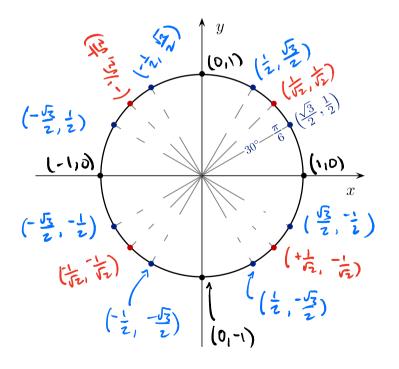


Trigonometry Review

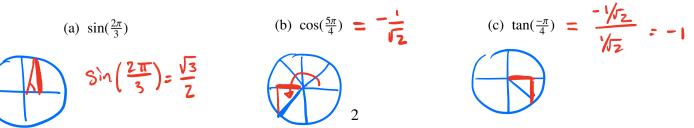
3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α .



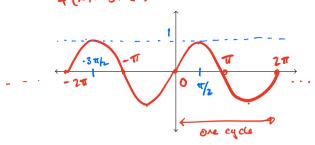
4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of **any three marked points, one of** each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)



5. Without a calculator evaluate:



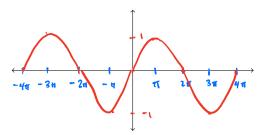
6. On the axes below, graph at least two cycles of $f(x) = \sin x$, $f(x) = \sin(x/2)$. Label all x- and y-intercepts. $f(x) = \$ \land (x)$



7. (a) Use the graph of $f(x) = \sin(x)$ to solve $\sin(x) = 1$

Need where
$$\sin(k) = 1 \implies$$

 $X = \frac{\pi}{2} + k(2\pi)$ for integers k
 $k \in \mathbb{Z}$



here, we are expanding by 2 (= compressing by $\frac{1}{2}$) Check: at $x = \pi$, $\sin(\frac{1}{2} \cdot \pi) = \sin(\frac{\pi}{2}) = 1$

(b) Use the graph of $f(x) = \sin(x/2)$ to determine the domain of $f(x) = \csc(x/2)$

From the griph, we bee shat
$$\sin(\frac{x}{h}) = 0$$
 at
integer multiples of $2\pi r$. There fore, the domain
is $\begin{cases} x \in \mathbb{R} : x \neq 2\pi r h \ b \ b \in \mathbb{Z}, \\ y \in \mathbb{R} : x \neq 2\pi r h \ c = 1 \\ x \in \mathbb{Z}, \\ y \in \mathbb$