Transformation Review

1. Explain what each does to the original graph $y=f(x)$. (Assume $c>0$.)
(e) $c f(x)$
(a) $f(x)+c$
(b) $f(x)-c$
(f) $f(c x)$
(c) $f(x+c)$
(g) $-f(x)$
(d) $f(x-c)$
(h) $f(-x)$
2. Let $f(x)=\left\{\begin{array}{ll}2 & x \leq 1 \\ 3-x & x>1\end{array}\right.$. Graph each of the following using the ideas from \# 1 above.
(a) $f(x)$

(c) $f(2 x)$

(b) $f(x+1)$

(d) $-2 f(x)$

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α.

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of any three marked points, one of each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)$
(c) $\tan \left(\frac{-\pi}{4}\right)$
6. On the axes below, graph at least two cycles of $f(x)=\sin x, f(x)=\sin (x / 2)$. Label all x - and y-intercepts.

7. (a) Use the graph of $f(x)=\sin (x)$ to solve $\sin (\mathrm{x})=1$
(b) Use the graph of $f(x)=\sin (x / 2)$ to determine the domain of $\mathrm{f}(\mathrm{x})=\csc (\mathrm{x} / 2)$
