1. Use the Laws of Exponents to rewrite and simplify. Write down the rules that you are using to the side of your work. (below in red)
a. $\sqrt[3]{x^{-2}}$
b. $b^{(n-1)}\left(3 b^{2}\right)^{n}$
c. $\frac{6 x^{2} y}{\sqrt{4 x y^{3}}}$
$=b^{n-1} 3^{n} b^{2 n}$
$=\frac{6 x^{2} y}{2 x^{1 / 2} y^{3 / 2}}$
$a^{1 / n}=\sqrt[n]{a}$
$=b^{n-1+2 n} \cdot z^{n}$
$a^{1 / n}=\sqrt[n]{a}$
$(a b)^{m}=a^{m} b^{m}$
$a^{1 / n}=\sqrt[n]{a}$
$\left(a^{m}\right)^{n}=a^{m}$
$\sqrt[3]{x^{-2}}=x^{-2 / 3}$
$(a b)^{n}=a^{n} b^{n}$
$=3 x^{2} x^{-1 / 2} y y^{-3 / 2}$
$=\left(b^{3 n-1}\right) 3^{n}$

$$
a^{-1}=\frac{1}{a}
$$

and $\left(a^{m}\right)^{n}=a^{m n}$

$$
=3 x^{3 / 2} y^{-1 / 2}=\frac{3 x^{3 / 2}}{a^{m} a^{n}=a^{m+n}}
$$

2. Are the following statements true or false? If either case, explain why. If possible, change the false statement so the are a true statement. Provide a counter example to the
$a(a+b)^{2}=a^{2}+b^{2} \quad$ False $1^{2} \quad 2 \quad$ false statement.
a. $(a+b)^{2}=a^{2}+b^{2} \quad$ False! $1^{2}+2^{2}=5$ but $(1+2)^{2}=9$.
b. $\sqrt{x^{2}+4}=x+2$ False! $\sqrt{1^{2}+4}=\sqrt{5}$ but $1+2=3$
c. $\frac{a+b}{c+d}=\frac{a}{c}+\frac{b}{d}$ False! $\frac{1+2}{3+4}=\frac{3}{7}$ but $\frac{1}{3}+\frac{2}{4}=\frac{4}{12}+\frac{6}{12}=\frac{10}{12}=\frac{5}{6}$
d. $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ True ${ }^{\prime}$
3. On the axes below, graph $f(x)=2^{x}, g(x)=e^{x}$, and $k(x)=\left(\frac{1}{2}\right)^{x}$. Label any x - and y intercepts.

4. What is the domain and range of $f(x)=2^{x}$? Asymptotes?

Domain: all real \#s $(-\infty, \infty)$
Range: all positive reals $(0, \infty)$
$H A$ at $y=0 \quad($ as $x \rightarrow-\infty)$; no $V A$
5. Sketch the graph of each function below, using what you know about transformations of functions. Determine its domain and range, and label any x - and y-intercepts (use exact numbers) and horizontal or vertical asymptotes.
(a) $f(x)=e^{x}$
$y_{4} 2$

(c) $f(x)=e^{x-2}=\exp (x-2)$

