1. Fill in the blanks below. Assume a and c are fixed constants. (Note that these are all in your text but not in this order.) Assume $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist.
(a) $\lim _{x \rightarrow a} c=$ \qquad
(b) $\lim _{x \rightarrow a} x=$ \qquad
(c) $\lim _{x \rightarrow a}(f(x)+g(x))=$ \qquad
i. What do the rules above imply about $\lim _{x \rightarrow 12}(x+\pi)$?
(d) $\lim _{x \rightarrow a}(f(x)-g(x))=$
(e) $\lim _{x \rightarrow a} c f(x)=$ \qquad
i. What do the rules above imply about $\lim _{x \rightarrow 5} 2 x+3$?
(f) $\lim _{x \rightarrow a} f(x) g(x)=$ \qquad
(g) $\lim _{x \rightarrow a} x^{n}=$
(h) $\lim _{x \rightarrow a}(f(x))^{n}=$ \qquad
(i) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$ \qquad provided \qquad
(j) $\lim _{x \rightarrow a} \sqrt[n]{x}=$ \qquad
(k) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=$ \qquad
2. If $\lim _{x \rightarrow \sqrt{2}} f(x)=8$ and $\lim _{x \rightarrow \sqrt{2}} g(x)=e^{2}$, then evaluate

$$
\lim _{x \rightarrow \sqrt{2}}\left(\frac{g(x)}{(3-f(x))^{2}}+2 \sqrt{g(x)}\right)
$$

3. Use the previous rules to evaluate (a) and explain why you cannot use the rules to evaluate (b).
(a) $\lim _{w \rightarrow-\frac{1}{2}} \frac{2 w+1}{w^{3}}$
(b) $\lim _{t \rightarrow 1} \frac{t^{2}+t-2}{t^{2}-1}$
4. (One more super-useful rule!) Fill in the box: If $f(x)=g(x)$ when $x \neq a$, then $\lim _{x \rightarrow a} f(x) 1 \mathrm{~cm}$ $\lim _{x \rightarrow a} g(x)$ provided the limits exist. Use this rule and what you know about zeros of polynomials to evaluate
$\lim _{t \rightarrow 1} \frac{t^{2}+t-2}{t^{2}-1}$
