WORKSHEET: §2.3

- 1. Fill in the blanks below. Assume a and c are fixed constants. (Note that these are all in your text but not in this order.) Assume $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist.
 - (a) $\lim_{x \to a} c =$ _____
 - (b) $\lim_{x \to a} x =$ _____
 - (c) $\lim_{x \to a} (f(x) + g(x)) =$ _____
 - i. What do the rules above imply about $\lim_{x \to 12} (x + \pi)$?

(d) $\lim_{x \to a} (f(x) - g(x)) =$ _____

- (e) $\lim_{x \to a} cf(x) =$ _____
 - i. What do the rules above imply about $\lim_{x\to 5} 2x + 3$?
- (f) $\lim_{x \to a} f(x)g(x) = _$
- (g) $\lim_{x \to a} x^n = _$
- (h) $\lim_{x \to a} (f(x))^n =$ _____
- (i) $\lim_{x \to a} \frac{f(x)}{g(x)} =$ _____ provided _____
- (j) $\lim_{x \to a} \sqrt[n]{x} =$ _____
- (k) $\lim_{x \to a} \sqrt[n]{f(x)} =$ _____

2. If
$$\lim_{x \to \sqrt{2}} f(x) = 8$$
 and $\lim_{x \to \sqrt{2}} g(x) = e^2$, then evaluate

$$\lim_{x \to \sqrt{2}} \left(\frac{g(x)}{(3 - f(x))^2} + 2\sqrt{g(x)} \right)$$

3. Use the previous rules to evaluate (a) and explain why you *cannot* use the rules to evaluate (b).

(a)
$$\lim_{w \to -\frac{1}{2}} \frac{2w+1}{w^3}$$

(b)
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$

4. (One more super-useful rule!) Fill in the box: If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x)$ Icm $\lim_{x \to a} g(x)$ provided the limits exist. Use this rule *and what you know about zeros of polynomials* to evaluate

 $\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$