The function

$$
f^{\prime}(x)=
$$

\qquad
is called the derivative of f. The value of f^{\prime} at x can be interpreted geometrically as the
\qquad of the tangent line to f at the point $(x, f(x))$. Note: f^{\prime} is called the derivative because it has been derived from f using the limit operation defined above. The domain of f^{\prime} is the set of all x such that this limit exists and may be smaller than the domain of f.

1. Let $f(x)=x^{2}+2$, shown below. Use the definition of the derivative as a function to compute $f^{\prime}(x)$. Then graph $f^{\prime}(x)$ on the same axes.

2. Let $f(x)=\frac{1}{3} x^{3}-4 x$.
(a) Use the definition of the derivative (as a function) to find a formula for $f^{\prime}(x)$. You may find it helpful to use the fact that $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.

(b) Factor the formula and use the factorization to plot the graph of $f^{\prime}(x)$ on the same axes that show $f(x)$.
(c) What do you notice about the relationship between the zeroes of $f^{\prime}(x)$ and the tangent lines to $f(x)$?
3. Consider the function

$$
f(x)=\left|\frac{x^{2}}{8}-\frac{x}{2}-4\right|=\left\{\begin{array}{lll}
\frac{x^{2}}{8}-\frac{x}{2}-4 & \text { if } & x \leq-4 \text { or } x \geq 8 \\
-\left(\frac{x^{2}}{8}-\frac{x}{2}-4\right) & \text { if } & -4<x<8
\end{array} .\right.
$$

(a) The graph of $f(x)$ is given on the top set of axes shown below. By thinking about slopes of tangent lines, sketch a graph of the derivative on the second set of axes.
When I ask you to sketch, I am interested in the qualitative behavior of the derivative: Where does it cross the x-axis? Is it positive or negative? Is it a lot positive or a little positive? Are the slopes growing steeper or getting less steep? (This is why the y-axis is unmarked on the answer graph.)
(b) Use the definition of the derivative to determine $f^{\prime}(x)$ algebraically, for two cases: (i) $x<-4$ or $x>8$; (ii) $-4<x<8$. Explain why your algebraic calculations match your sketch.

(c) Using your formula from (a), compute

- $\lim _{x \rightarrow-4^{-}} f^{\prime}(x)=$
- $\lim _{x \rightarrow-4^{+}} f^{\prime}(x)=$
- $\lim _{x \rightarrow 8^{-}} f^{\prime}(x)=$
- $\lim _{x \rightarrow 8^{+}} f^{\prime}(x)=$

Using the language of calculus, what can you say about $f^{\prime}(x)$ at $x=-4$ and $x=8$? Why does this make sense geometrically? (Does it match your picture?)

