WORKSHEET §2.8

When you are asked to sketch the derivative on the provided axes, I am interested in the qualitative behavior of the derivative: Where does it cross the x-axis? Is it positive or negative? Is it a lot positive or a little positive? Are the slopes growing steeper or getting less steep? (This is why the y-axis is unmarked on the answer graphs.)

Exercise 1. Sketch the derivatives of the following graphs.

Exercise 2. Each of the graphs in Exercise 1 are polynomials. Fill in the blanks:
(a) Graph 1 looks like a quadratic polynomial (the degree is 2) and the derivative of graph 1 looks like a linear_polynomial (the degree is I_).
(b) Graph 2 looks like a Cubic_polynomial (the degree is 3) and the derivative of graph 2 looks like a quadratic polynomial (the degree is ___).
(c) Graph 3 looks like a quartic polynomial (the degree is 4) and the derivative of graph 3 looks like a cubic polynomial (the degree is 3 _).
(d) Make a guess: If $f(x)$ is a degree n polynomial, then $f^{\prime}(x)$ is a degree $n-1$ polynomial.

Exercise 3. Sketch the derivatives of graphs 4 and 5.

Graph 4

Graph 5

Exercise 4. What is an important difference between the derivative of graph 3 (from Exercise 1) and the derivative of graph 4? Use terminology from calculus.

The derivative of graph 4 is not continuous

Exercise 5. Explain why Graph 5 has a tangent line at $x=0$, even though the derivative is undefined at $x=0$.

The tangent line at O is vertical, so the slope (=derivative) is undefined. As the TL approach 0, their slopes increase ufo bound they get closer to vertical) o

