1. Use the linear approximation of $f(x)=\sqrt{x}$ at $x=4$ to approxmiate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.
The livearization of $f(x)$ at $x=4: \quad f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$ so $f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=1 / 4$, and thus $L(x)=\frac{1}{4}(x-4)+2$

$$
\text { So } L(4.1)=\frac{1}{4}\left(4+\frac{1}{10}-4\right)+2=2+\frac{1}{40}=2.025
$$

By calculator, $f(4.1)=2.02484$

$$
f(4,1)-L(4.1)=-0.00015 \text { not too bad }
$$

2. Use the linear approximation to approximate the cosine of $29^{\circ}=\frac{29}{30} \frac{\pi}{6}$ radians.

We will use $L(x)$ at $x=\pi / 6$ since we lenow $\cos (\pi / 6)$ exactly.

$$
\frac{d}{d x}(\cos (x))=-\sin (x) \text { so }\left.\frac{d}{d x}\right|_{x=\pi / 6}=-\sin (\pi / 6)=-1 / 2
$$

Thus $L(x)=-\frac{1}{2}(x-\pi / 6)+\frac{\sqrt{3}}{2}, 80$

$$
\begin{aligned}
& L\left(29^{0}\right)=L\left(\frac{29}{30} \cdot \frac{\pi}{6}\right)=-\frac{1}{2}\left(\frac{29}{30} \cdot \frac{\pi}{6}-\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2}=-\frac{1}{2}\left(-\frac{1}{30}\right)+\frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{2}+\frac{1}{60}
\end{aligned}
$$

3. Find the linear approximation of $f(x)=\ln (x)$ at $a=1$ and use it to approximate $\ln (0.5)$ and $\ln (0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y=\ln (x)$ and $y=L(x)$ and label the points $A=(0.5, \ln (0.5))$ and $B=(0.5, L(0.5))$
Note $\ln (1)=0$ and $\frac{d}{d x}(\ln (x))=\frac{1}{x}$ so $\left.\frac{d f}{d x}\right|_{a=1}=1$.
Thus the hinearization of $f(x)$ at $a=1$ is

$$
\begin{array}{cl}
L(x)=1(x-1)+0=x-1 . \\
L(0.5)=L(1 / 2)=-1 / 2 & \ln (1 / 2)=-.69314 \\
L(0.9)=L\left(\frac{9}{10}\right)=-1 / 10 & \ln (.9)=-0.10536
\end{array}
$$

Tangent line approx is off by almost. 2 at $a=1 / 2$; not gear. Howerer, approx at $9 / 10$ is accurate to 0.005 , which is not bad.

4. A tree is growing and the radius of its trunk in centimeters is $r(t)=2 \sqrt{t}$ where t is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and one month.
Differential: idea is $\frac{d y}{d t} \approx \frac{\Delta y}{\Delta t} \Rightarrow \Delta y \approx \frac{d y}{d t} \Delta t$.
Our $\Delta t=1$ month $=\frac{1}{12}$ years, so

$$
\begin{aligned}
& \Delta y \approx r^{\prime}(c) \cdot \frac{1}{12} \text {, Note } r^{\prime}(t)=2 \cdot \frac{1}{2} t^{-1 / 2}=\frac{1}{\sqrt{t}} \text { so } \\
& r^{\prime}(t)=\frac{1}{2} \text {. Therefore, } \Delta y \approx \frac{1}{2} \cdot \frac{1}{12}=\frac{1}{24}
\end{aligned}
$$

\rightarrow we estimate the tree grew about $1 / 24 \mathrm{~cm}$ in the month
5. A coat of paint of thickness 0.05 cm is being added to a hemispherical dome of radius 25 m . Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]
We are estimating the change in volume.
We know $V=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)=\frac{2}{3} \pi r^{3}$ and $\frac{\Delta v}{\Delta r} \approx \frac{d v}{d r} \Rightarrow \Delta v \approx \frac{d v}{d r} \cdot \Delta r$. We know $\Delta r=(0.05 \mathrm{~cm})\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=$ $\frac{d v}{d r}=\frac{2}{\beta} \pi\left(3 r^{2}\right)$ So when $r=25, \frac{d v}{d r}=2 \pi(25)^{2}$.

$$
\frac{5}{100} \cdot \frac{1}{100}=\frac{5}{10000}=.00005
$$

Therefore, $\Delta V \approx 4 \cdot \pi \cdot 25.25 \cdot \frac{5}{100 \cdot 100}=\frac{5 \pi}{8}$ cubic meters $\approx 1.96 \mathrm{~m}^{3}$ ≈ 1960 Liters

6. The radius of a disc is 24 cm with an error of $\pm 0.5 \mathrm{~cm}$. Estimate the error in the area of the disc as an absolute and as a relative error.

$$
\begin{aligned}
& \Delta A \approx \frac{d A}{d r} \cdot \Delta r \\
& \text { Know } A=\pi r^{2} \Rightarrow \frac{d A}{d r}=2 \pi r \\
& \text { So } \Delta A \approx 2 \pi(24)(\pm 0.5)
\end{aligned}
$$

abs. error: $\Delta A= \pm 48 \pi(0.5)= \pm 24 \pi \quad$ Total areas $\pi(2.4)^{2}$

$$
\begin{array}{r}
\text { relative error }=\frac{\Delta A}{A}=\frac{ \pm 24 \pi}{\pi(24)^{2}}=\frac{ \pm 1}{24}=0.0416 \ldots \text { so relative } \\
\text { error is } \pm 41 / 676
\end{array}
$$

