1. Use the linear approximation of $f(x) = \sqrt{x}$ at x = 4 to approximate $\sqrt{4.1}$ and compare your result to its approximation computed by your calculator.

The linearization of
$$f(x)$$
 at $Y = 4$: $f''(x) = \frac{1}{2}x^{-1/2}$ so
 $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$, and thus $L(x) = \frac{1}{4}(x-4) + 2$
So $L(4,1) = \frac{1}{4}(4+\frac{1}{10}-4)+2 = 2+\frac{1}{40} = 2.025$
By calculator, $f(4,1) = 2.02484$
 $f(4,1) - L(4,1) = -0.00015$ not too bad
2. Use the linear approximation to approximate the cosine of $29^{\circ} = \frac{29}{306}$ radians.
We will use $L(x)$ at $x = \frac{1}{4}b$ since we know $\cos(\frac{1}{4}b)$ exactly.
 $\frac{1}{4}(\cos(x)) = -\sin(x)$ to $\frac{1}{4x}\Big|_{x=\frac{1}{4}} = -\frac{1}{2}(x-\frac{1}{6}b) + \frac{\sqrt{2}}{2}$, so

$$L(29^{\circ}) = L(\frac{29}{3^{\circ}}, \frac{\pi}{6}) = -\frac{1}{2}(\frac{29}{3^{\circ}}, \frac{\pi}{6} - \frac{\pi}{6}) + \frac{\sqrt{3}}{2} = -\frac{1}{2}(-\frac{1}{3^{\circ}}) + \frac{\sqrt{3}}{2}$$
$$= \frac{\sqrt{3}}{2} + \frac{1}{60}$$

3. Find the linear approximation of $f(x) = \ln(x)$ at a = 1 and use it to approximate $\ln(0.5)$ and $\ln(0.9)$. Compare your approximation with your calculator's. Sketch both the curve $y = \ln(x)$ and y = L(x) and label the points $A = (0.5, \ln(0.5))$ and B = (0.5, L(0.5)). .

Note
$$\ln(i) = 0$$
 and $\frac{d}{dx} \left(\ln(ix) = \frac{1}{x} + s_0 + \frac{d^4}{dx} \right|_{a=1} = 1$.
Thus the linearization of $f(x)$ at $a = 1$ is
 $L(x) = 1(x-1) + 0 = x-1$.
 $L(0.5) = L(1/2) = -1/2$ $\ln(1/2) = -.69314$
 $L(0.9) = L(\frac{9}{10}) = -1/10$ $\ln(1.9) = -0.10536$
Tangent line approx is off by almost .2 at $a = \frac{1}{2}$; not
grass. Howers, approx at 9/10 is acurate to 0.005 , which
is not lead.
UAF Calculus I 1 3-10

gre is

4. A tree is growing and the radius of its trunk in centimeters is $r(t) = 2\sqrt{t}$ where *t* is measured in years. Use the differential to estimate the change in radius of the tree from 4 years to 4 years and one month.

Differential: idea is
$$\frac{dy}{dt} \approx \frac{dy}{dt} \Rightarrow dy \approx \frac{dy}{dt} \Delta t$$
.
Our $\Delta t = 1$ month = $\frac{1}{12}$ years, so
 $\Delta y \approx r'(4) \cdot \frac{1}{12}$. Note $r'(t) = 2 \cdot \frac{1}{2}t^{-1/2} = \frac{1}{\sqrt{t}}$ so
 $r'(4) = \frac{1}{2}$. Therefore, $\Delta y \approx \frac{1}{2} \cdot \frac{1}{12} = \frac{1}{24}$
—D we extinate the tree grew about $\frac{1}{24}$ cm in the month

5. A coat of paint of thickness 0.05cm is being added to a hemispherical dome of radius 25m. Estimate the volume of paint needed to accomplish this task. [Challenge: will this be an underestimate or an overestimate? Thinking geometrically or thinking algebraically will both give you the same answer.]

We are extinating the change in volume.
We know
$$V = \frac{i}{2} \left(\frac{4}{3} \pi r^3 \right) = \frac{2}{3} \pi r^3$$

and $\frac{\Delta V}{\Delta r} \approx \frac{dV}{dr} \Rightarrow \Delta V \approx \frac{dV}{dr}$. We know $\Delta r = (0.05 \text{ cm}) \left(\frac{1 \text{ m}}{100 \text{ cm}} \right) = \frac{5}{100} \cdot \frac{1}{100} = \frac{5}{1000} = .00005$
 $\frac{dV}{dr} = \frac{2}{3} \pi (3r^2)$ So when $r = 25$, $\frac{dV}{dr} = 2\pi (25)^2$.
Therefore, $\Delta V \approx 3/.\pi \cdot 2K \cdot 25 \cdot \frac{5}{124} = \frac{5\pi}{8}$ cubic meters ≈ 1 . 9 b m³
 ≈ 1460 Liter
6. The radius of a disc is 24cm with an error of ± 0.5 cm. Estimate the error in the area of the disc as

6. The radius of a disc is 24 cm with an error of ± 0.5 cm. Estimate the error in the area of the disc as an absolute and as a relative error.

$$\Delta A \approx \frac{dA}{dr} \cdot \Delta r$$

$$Know \quad A = \pi r^{2} \Rightarrow \frac{dA}{dr} = 2\pi$$

$$So \quad \Delta A \approx 2\pi (24) (\pm 0.5)$$

abs. $error: \Delta A = \pm 48\pi (0.5) = \pm 24\pi$ Total area = $\pi (2.4)^2$

relative error =
$$\frac{DA}{A} = \frac{\pm 24\pi}{\pi(24)^2} = \frac{\pm 1}{24} = \frac{\pm 0.0416...}{0.0416...}$$
 so relative
error is $\pm 4\%$ %

UAF Calculus I