1. For each of the following, compute the derivative using the product or quotient rule, and then compute the derivative without using the product or quotient rule, after the indicated algebraic pre-processing. Do you get the same answer? Which one is easier?
(a) $F(x)=\frac{e^{x}+1}{\sqrt{2}+1}=\frac{1}{\sqrt{2}+1}\left(e^{x}+1\right)$
with product/quotient $\sqrt{2}+1$ is just a constant. But it you do... $F^{\prime}(x)=\frac{(\sqrt{2}+1)\left(e^{x}\right)-\left(e^{x}+1\right)(0)}{(\sqrt{2}+1)^{2}}=\frac{e^{x}}{\sqrt{2}+1}$

without product/quotient

It's crazy to try to use quotient rule here!

$$
F^{\prime}(x)=\frac{1}{\sqrt{2}+1} e^{x}
$$

(b) $H(s)=\frac{A}{B \sqrt{s}}=\frac{A}{B} s^{-1 / 2}$
with product/quotient
Again quotient is a pain. But here we go:
$H^{\prime}(\delta)=\frac{(B \sqrt{1})(0)-(A)\left(B \cdot \frac{1}{2} \delta^{-1 / 2}\right)}{(B \sqrt{1})^{2}}$
$=\left(\frac{-A B}{2 \sqrt{s}}\right)\left(\frac{1}{B^{2} s}\right)=\frac{-A}{2 s \sqrt{s}}=\frac{-A}{2 s^{3 / 2}}$
(c) $k(t)=\frac{t^{3}+6}{t}=t^{2}+6 t^{-1}$
with product/quotient

$$
\begin{aligned}
K^{\prime}(t) & =\frac{t\left(3 t^{2}\right)-\left(t^{3}+6\right)(1)}{t^{2}} \\
& =3 t-t-\frac{6}{t^{2}} \\
& =2 t-\frac{6}{t^{2}}
\end{aligned}
$$

(d) $y=(x-\pi) e^{x}=x e^{x}-\pi e^{x}$
with product/quotient

$$
y^{\prime}=(x-\pi) e^{x}+e^{x}(1)
$$

without product/quotient

without product/quotient
$H(s)=\frac{A}{3} \delta^{-1 / 2}$
$H^{\prime}(s)=\frac{A}{B}\left(\frac{-1}{2} s^{-3 / 2}\right)$
without product/quotient

Actually, these me about
the same in terms of
difficulty; probably Id
use the product rule!
2. Use the graphs of $y=\sin x$ and $y=\cos x$ to sketch a graph of y^{\prime} (on the same set of axes).

What do you notice?

looks line $-\sin (x)$

$$
\text { looks line } \cos (x)
$$

3. Use the fact that $\frac{d}{d x} \sin (x)=\cos (x)$ and $\frac{d}{d x} \cos (x)=-\sin (x)$ to find the derivative of

$$
\begin{aligned}
y= & 3 x^{4} \cos (x) \\
y^{\prime} & =3 x^{4} \frac{d}{d x}(\cos (x))+\cos (x) \frac{d}{d x}\left(3 x^{4}\right) \\
& =3 x^{4}(-\sin (x))+\cos (x)\left(12 x^{3}\right)
\end{aligned}
$$

4. Use the fact that $\tan (x)=\frac{\sin (x)}{\cos (x)}$ and the quotient rule to determine the derivative of $y=\tan (x)$. Simplify your answer as much as possible.

$$
\begin{aligned}
\frac{d}{d x}(\tan (x)) & =\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right) \\
& =\frac{\cos (x)(\cos (x))-\sin (x)(-\sin (x)}{(\cos (x))^{2}} \\
& =\frac{(\cos (x))^{2}+(\sin (x))^{2}}{(\cos (x))^{2}} \\
& =\frac{1}{(\cos (x))^{2}} \\
& =(\sec (x))^{2} . \\
\text { So } \frac{d}{d x} \tan (x) & =(\sec (x))^{2} .
\end{aligned}
$$

