1. Evaluate the derivatives.

(a)
$$H(x) = \sqrt[3]{\frac{4-2x}{5}} = \left(\frac{1}{5}(4-2x)\right)^{\frac{1}{3}}$$

 $H'(x) = \frac{1}{3}\left(\frac{1}{5}(4-2x)\right)^{\frac{2}{3}}\left(\frac{1}{5}(-2)\right)$

(b)
$$y = e^{\sec \theta}$$

 $y' = \left(e^{\sec \theta}\right)\left(\sec \theta \tan \theta\right)$

(c)
$$f(x) = \frac{8}{x^2 + \sin(x)} = 8(x^2 + \sin(x))^{-1}$$

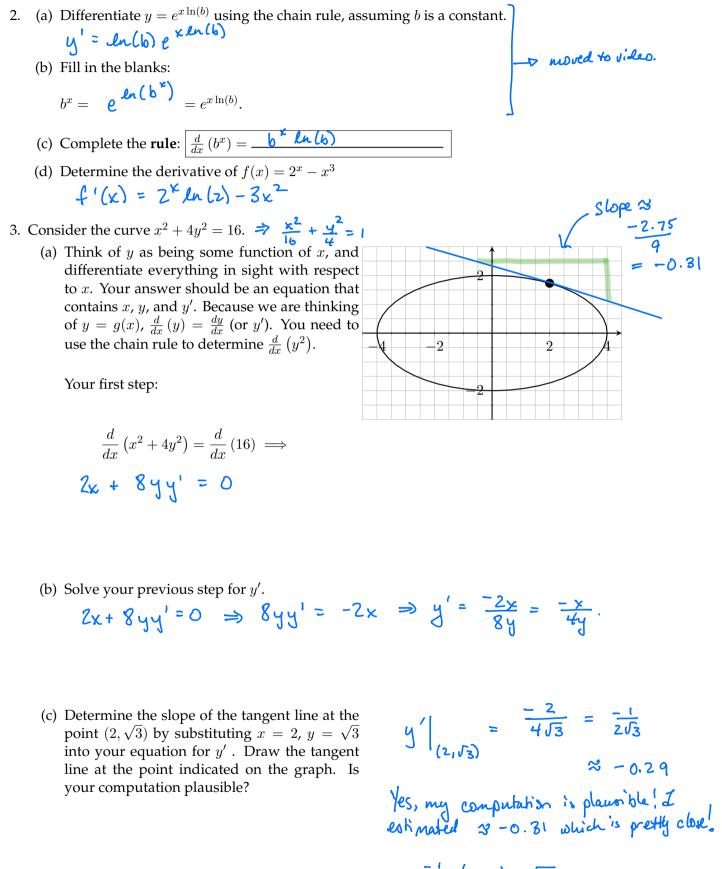
 $f'(x) = -8(x^2 + \sin(x))^{-2}(2x + \cos(x))$
 $= -\frac{8(2x + \cos(x))}{(x^2 + \sin(x))^2}$
(d) $x(t) = \frac{1}{\sqrt{2}}\tan(\frac{\pi}{6} - x)$
 $\chi'(t) = \frac{1}{\sqrt{2}} \sec(\frac{\pi}{6} - x) + \tan(\frac{\pi}{6} - x) \begin{bmatrix} -1 \end{bmatrix}$
 $(e) y = \frac{xe^{-\pi x^2/10}}{100}$
(c) $f(x) = \frac{8}{x^2 + \sin(x)} = 8(x^2 + \sin(x))^{-1}$
(c) $f(x) = \frac{8}{x^2 + \sin(x)} = 8(x^2 + \sin(x))^{-1}$
(c) $f(x) = \frac{8}{x^2 + \sin(x)} = 8(x^2 + \sin(x))^{-2}$
(c) $f(x) = -\frac{8}{x^2 + \sin(x)} = 8(x^2 + \cos(x))$
 $(x^2 + \sin(x))^2$
(c) $f(x) = \frac{8}{x^2 + \sin(x)} = -\frac{8}{x^2 + \sin(x)} = -\frac{8}{$

$$y' = \frac{i}{100} \left(\chi \frac{d}{Ax} \left(e^{-\pi x^{2}/10} \right) + e^{-\pi x^{2}/10} \left(i \right) \right)$$

= $\frac{i}{100} \left(\chi \left(e^{-\pi x^{2}/10} \right) \left(-\frac{2\pi x}{10} \right) + e^{-\pi x^{2}/10} \right)$
(f) $y = \frac{e^{2} - x}{5 + \cos(5x)}$
 $y' = \frac{(5 + \cos(5x))(-1) - (e^{2} - x)(5 + \cos(5x)(5))}{(5 + \cos(5x))^{2}}$

(g) $F(x) = (2re^{rx} + n)^p$ (Assume *r*, *n*, and *p* are fixed constants.)

$$F'(x) = p(2re^{rx}+n)^{p-i}(2re^{rx}\cdot r)$$
 Note $\frac{d}{dx}(p) = 0$, $\frac{d}{dx}(n) = 0$,
 $\frac{d}{dx}(e^{rx}) = re^{rx}$.



Write the equation of the tangent line:
$$y = \overline{z}\overline{z}\overline{z}(x-2) + \sqrt{3}$$

UAF Calculus I