1. Evaluate the derivatives.
(a) $H(x)=\sqrt[3]{\frac{4-2 x}{5}}$
(b) $y=e^{\sec \theta}$
(c) $f(x)=\frac{8}{x^{2}+\sin (x)}$
(d) $x(t)=\frac{1}{\sqrt{2}} \tan \left(\frac{\pi}{6}-x\right)$
(e) $y=\frac{x e^{-\pi x^{2} / 10}}{100}$
(f) $y=\frac{e^{2}-x}{5+\cos (5 x)}$
(g) $F(x)=\left(2 r e^{r x}+n\right)^{p}$ (Assume r, n, and p are fixed constants.)
2. (a) Complete the rule: $\frac{d}{d x}\left(b^{x}\right)=$ \qquad
(b) Determine the derivative of $f(x)=2^{x}-x^{3}$
3. Consider the curve $x^{2}+4 y^{2}=16$.
(a) Think of y as being some function of x, and differentiate everything in sight with respect to x. Your answer should be an equation that contains x, y, and y^{\prime}. Because we are thinking of $y=g(x), \frac{d}{d x}(y)=\frac{d y}{d x}$ (or y^{\prime}). You need to use the chain rule to determine $\frac{d}{d x}\left(y^{2}\right)$.

Your first step:

$$
\frac{d}{d x}\left(x^{2}+4 y^{2}\right)=\frac{d}{d x}(16) \Longrightarrow
$$

(b) Solve your previous step for y^{\prime}.
(c) Determine the slope of the tangent line at the point $(2, \sqrt{3})$ by substituting $x=2, y=\sqrt{3}$ into your equation for y^{\prime}. Draw the tangent line at the point indicated on the graph. Is your computation plausible?

Write the equation of the tangent line at $(2, \sqrt{3})$:

