SECTION 3.4 CHAIN RULE

- 1. Complete the Chain Rule (using both types of notation)
 - If F(x) = f(g(x)), then F'(x) =then $\frac{dy}{dx} =$
- 2. For each function below, write it as a nontrivial composition of functions in the form f(g(x)). Then use the chain rule to compute the derivative.

(a)
$$H(x) = \sqrt[3]{4 - 2x}$$

outside = $f(x) =$
inside = $g(x) =$

(b)
$$H(x) = \tan(2 - x^4)$$

outside = f(x) =

inside
$$= g(x) =$$

(c) $H(x) = e^{2-2x^3}$

outside = f(x) =

inside
$$= g(x) =$$

(d)
$$H(x) = \frac{4}{x + \sin(x)}$$

outside = $f(x) =$
inside = $g(x) =$

3. For each problem below, find the derivative.

(a)
$$z(t) = (2x^3 - 5x)^7$$

(b)
$$x(\theta) = (\cos(\theta))^3$$

(c)
$$y = x^2 - 3\sin(x^3)$$

(d)
$$y = 10e^{\sqrt{t}}$$

(e)
$$f(x) = \frac{\sqrt{2}}{\sqrt{x^2 - 4}}$$

(f)
$$g(x) = \frac{\sec(x^2 + 2)}{12}$$

(g)
$$k(s) = \frac{A^2}{B+Cs}$$
 (A, B, C are constants!)