Section 3.4 Chain Rule

1. Complete the Chain Rule (using both types of notation)

- If $F(x)=f(g(x))$,
then $F^{\prime}(x)=$
- If $y=f(u)$ and $u=g(x)$,
then $\frac{d y}{d x}=$

2. For each function below, write it as a nontrivial composition of functions in the form $f(g(x))$. Then use the chain rule to compute the derivative.
(a) $H(x)=\sqrt[3]{4-2 x}$

$$
\begin{aligned}
& \text { outside }=f(x)= \\
& \text { inside }=g(x)=
\end{aligned}
$$

(b) $H(x)=\tan \left(2-x^{4}\right)$

$$
\begin{aligned}
& \text { outside }=f(x)= \\
& \text { inside }=g(x)=
\end{aligned}
$$

(c) $H(x)=e^{2-2 x^{3}}$

$$
\begin{aligned}
& \text { outside }=f(x)= \\
& \text { inside }=g(x)=
\end{aligned}
$$

(d) $H(x)=\frac{4}{x+\sin (x)}$

$$
\begin{aligned}
& \text { outside }=f(x)= \\
& \text { inside }=g(x)=
\end{aligned}
$$

3. For each problem below, find the derivative.
(a) $z(t)=\left(2 x^{3}-5 x\right)^{7}$
(b) $x(\theta)=(\cos (\theta))^{3}$
(c) $y=x^{2}-3 \sin \left(x^{3}\right)$
(d) $y=10 e^{\sqrt{t}}$
(e) $f(x)=\frac{\sqrt{2}}{\sqrt{x^{2}-4}}$
(f) $g(x)=\frac{\sec \left(x^{2}+2\right)}{12}$
(g) $k(s)=\frac{A^{2}}{B+C s}(A, B, C$ are constants! $)$
