SECTION 3.5 IMPLICIT DIFFERENTIATION

1. Find $\frac{d y}{d x}$ for $2 x+3 y=x y-y^{2}$ and find the equations of tangents to the graph when $x=0$. Use the portion of the curve shown below as an aid and to determine the plausibility of your answers.

(Estimate: $m=\frac{-2}{3}$)

$$
\begin{aligned}
& \frac{d}{d x}(2 x+3 y)=\frac{d}{d x}\left(x y-y^{2}\right) \Rightarrow \\
& 2+3 \frac{d}{d x}(y)=x \frac{d}{d x}(y)+y \frac{d}{d x}(x)-2 y \frac{d y}{d x} \Rightarrow \\
& 2+3 y^{\prime}=x y^{\prime}+y(1)-2 y y^{\prime} \quad \Rightarrow \\
& 3 y^{\prime}-x y^{\prime}+2 y y^{\prime}=y-2 \quad \Rightarrow \\
& y^{\prime}(3-x+2 y)=y-2 \quad \Rightarrow \\
& y^{\prime}=\frac{y-2}{3-x+2 y}
\end{aligned}
$$

$$
\text { So }\left.y^{\prime}\right|_{(0,0)}=\frac{0-2}{3-0+2(0)}=\frac{-2}{3} \text { is the slope of the } T L \text { at }(0,0)
$$

2. Find $\frac{d a}{d b}$ for $a^{3} \sin (3 b)=a^{2}-b^{2}$. (Pay attention here: b is the independent variable (like x) and a is the dependent variable (like y).
$\frac{d}{d b}\left(a^{3} \sin (3 b)\right)=\frac{d}{d b}\left(a^{2}-b^{2}\right) \Rightarrow$
$a^{3} \cdot \frac{d}{d b}(\sin (3 b))+\sin (3 b) \frac{d}{d b}\left(a^{3}\right)=\frac{d}{d b}\left(a^{2}\right)-\frac{d}{d b}\left(b^{2}\right) \Rightarrow$
$a^{3}(\cos (3 b)(3))+\sin (3 b)\left(3 a^{2} \frac{d a}{d b}\right)=2 a \frac{d a}{d b}-2 b \Rightarrow$
$\frac{d a}{d b}\left(\sin (3 b) \cdot 3 a^{2}-2 a\right)=-2 b-3 a^{3} \cos (3 b) \Rightarrow \frac{d a}{d b}=\frac{-2 b-3 a^{3} \cos (3 b)}{-2 a+3 a^{2} \sin (3 b)}$

$$
\begin{aligned}
& \text { 3. Find } \frac{d y}{d x} \text { for } e^{x y}=x+y+1 \\
& \frac{d}{d x}\left(e^{x y}\right)=\frac{d}{d x}(x+y+1) \Rightarrow \\
& e^{x y} \frac{d}{d x}(x y)=1+\frac{d y}{d x}+0 \Rightarrow \\
& e^{x y}\left[x \frac{d y}{d x}+y(1)\right]=1+\frac{d y}{d x} \Rightarrow \\
& \frac{d y}{d x}\left(x e^{x y}\right)-\frac{d y}{d x}=1-y e^{x y} \Rightarrow \\
& \frac{d y}{d x}\left(x e^{x y}-1\right)=1-y e^{x y} \Rightarrow
\end{aligned}
$$

4. You are going to derive the formula for the derivative of inverse tangent the way we found the derivative of inverse sine in the video.
(a) Find $d y / d x$ for the expression $x=\tan (y)$.

$$
\begin{aligned}
& \frac{d}{d x}(x)=\frac{d}{d x}(\tan (y)) \Rightarrow 1=(\sec (y))^{2} \frac{d y}{d x} \Rightarrow \\
& \frac{d y}{d x}=\frac{1}{(\sec (y))^{2}}
\end{aligned}
$$

(b) Use the identity $1+(\tan (\theta))^{2}=(\sec (\theta))^{2}$ to rewrite you answer in part (a) and write your $d y / d x$ in terms of x only.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{(\sec (y))^{2}}=\frac{1}{1+(\tan y)^{2}} \text { But } \tan (y)=x, \text { so } \\
& \frac{d y}{d x}=\frac{1}{1+x^{2}} .
\end{aligned}
$$

(c) Now fill in the blank $\frac{d}{d x}[\arctan (x)]=\frac{1}{1+x^{2}}$ because if $x=\tan y$, then $y=\arctan (x)$
(d) Use your knowledge of the graph of $f(x)=\arctan (x)$ to decide if your answer seems plausi-
 - Oloseve that the slopes of $T L$ are position
on $(-\infty, \infty)$ and $\frac{1}{1+x^{2}}>0 \quad \forall x$. - Observe $\lim _{x \rightarrow \pm \infty}$ (slopes of TL) $=0$ and $\lim _{x \rightarrow \pm \infty} \frac{1}{1+x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{1 / x^{2}}{1 / x^{2}+1}=0$
5. Find the derivative of $f(x)=x \arctan x$.

$$
\begin{aligned}
\frac{d}{d x}(x \arctan (x)) & =x \frac{d}{d x}(\arctan x)+\arctan (x)(1) \\
& =x\left(\frac{1}{1+x^{2}}\right)+\arctan (x)
\end{aligned}
$$

6. Find the derivative of $f(x)=\arctan \left(4-x^{2}\right)$.

$$
f^{\prime}(x)=\left(\frac{1}{1+\left(4-x^{2}\right)^{2}}\right)(-2 x)=\frac{-2 x}{1+\left(4-x^{2}\right)^{2}}
$$

* Note: This sort of thing will end up being very useful in Calculus III

