1. We can use laws of logarithms and implicit differentiation to differentiate functions that are overly complicated/impossible to differentiate with the rules we already have.
(a) Find the derivative of $y=\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}$.
i. First, take the natural log of both sides, use laws of logarithms to change the product into a sum and pull down the exponents.

$$
\begin{aligned}
\ln (y) & =\ln \left[\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}\right] \\
& =\ln \left(\left(3 x-x^{5}\right)^{2 / 3}\right)+\ln \left(\left(x-\tan (x)^{5}\right)\right. \\
& =2 / 3 \ln \left(3 x-x^{5}\right)+5 \ln (x-\tan (x))
\end{aligned}
$$

ii. Next, implicitly differentiate everything with respect to x.

$$
\frac{y^{\prime}}{y}=\frac{2\left(3-5 x^{*}\right)}{3\left(3 x-x^{5}\right)}+\frac{5\left(1-(\sec (x))^{2}\right)}{x-\tan (x)}
$$

iii. Solve for $\frac{d y}{d x}$ and substitute what y equals (from the original function definition) in for y

$$
\begin{aligned}
& \begin{aligned}
y^{\prime} & =\left[\frac{2\left(3-5 x^{4}\right)}{3\left(3 x-x^{5}\right)}+\frac{5\left(1-(\sec (x))^{2}\right.}{x-\tan (x)}\right]\left[\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}\right] \\
& =\frac{2\left(3-5 x^{4}\right)\left(x-\tan (x)^{5}\right.}{3\left(3 x-x^{5}\right)^{1 / 3}}+5\left(1-(\sec (x))^{2}\right)\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{4}
\end{aligned} \\
& \text { (b) Find the derivative of } y=(\sin (x))^{x} \text {. } \quad \text { Which is what you would have gotten with the } \\
& \text { product rule followed of the chain rule. }
\end{aligned}
$$

i. First, take the natural \log of both sides, and use laws of logarithms to pull the x down from the exponent.

$$
\ln (y)=\ln \left(\sin (x)^{x}\right)=x \ln (\sin (x))
$$

ii. Next, implicitly differentiate everything with respect to x.

$$
\frac{y^{\prime}}{y}=x \cdot \frac{\cos (x)}{\sin (x)}+\ln (\sin (x))
$$

iii. Solve for $\frac{d y}{d x}$ and substitute what y equals (from the original function definition) in for y to find the derivative!

$$
y^{\prime}=(x \cot (x)+\ln (\sin (x))) \cdot(\sin (x))^{x}
$$

Section 3.7 part 1: Rates of Change in the Natural and Social Sciences

2. A stone is thrown in a pond and a circular ripple travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Determine the rate of change of area inside the ripple at time $t=1$ second and at time $t=2$ seconds. (Hint: draw a picture!)

$$
\text { radius at time } t=r(t)=60 t
$$

$A=$ area at time $t=\pi(r(t))^{2}=\pi(60 t)^{2}$

$$
\begin{aligned}
& \frac{d A}{d t}=2 \pi(60 t) \cdot 60=7200 \pi t \\
& \left.\frac{d A}{d t}\right|_{t=1}=\left.\begin{array}{c}
7200 \pi \\
\mathrm{~cm} / \mathrm{s}
\end{array} \frac{d A}{d t}\right|_{t=2}=14400 \pi \\
& \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

3. A population of caribou is growing, and its population is

$$
P(t)=4000 \frac{3 e^{t / 5}}{1+2 e^{t / 5}}
$$

(a) What is the population at time $t=0$?

$$
P(0)=4000 \text { caribou }
$$

(b) Determine the rate of change of the population at any time t.

$$
\frac{d P}{d t}=4000\left(\frac{\left(1+2 e^{t / 5}\right)\left(3 e^{t / 5} \cdot \frac{1}{5}\right)-\left(3 e^{t / 5}\right)\left(2 e^{t / 5} \cdot \frac{1}{5}\right)}{\left(1+2 e^{t / 5}\right)^{2}}\right) \quad \text { caribou/yed }
$$

(c) Determine the rate of change of the population at time $t=0$ years.

$$
\text { c) Determine the rate of change of the population at time } t=0 \text { years. } \quad \begin{aligned}
\left.\frac{d P}{d t}\right|_{t=0} & =4000\left(\frac{(1+2)(3 / 5)-(3)(2 / 5)}{(1+2)^{2}}\right)=4000\left(\frac{9 / 5-6 / 5}{9}\right) \\
& =4000\left(\frac{3 / 5}{9}\right)=4000\left(\frac{3}{6} \cdot \frac{1}{9}\right)=\frac{4000}{15}=\frac{5(800)}{5(3)}=\frac{800}{3}=26602 / 3
\end{aligned}
$$

(d) Determine the long term population.
$\lim _{t \rightarrow \infty} P(t)=4000 \lim _{t \rightarrow \infty} \frac{3 e^{t / 5}}{1+2 e^{t / 5}}=4000 \lim _{t \rightarrow \infty} \frac{3}{1 / t / 5+2}$

$$
=\frac{4000 \cdot 3}{2}=6000 \text { caribou }
$$

