1. We can use laws of logarithms and implicit differentiation to differentiate functions that are overly complicated/impossible to differentiate with the rules we already have.
(a) Find the derivative of $y=\left(3 x-x^{5}\right)^{2 / 3}(x-\tan (x))^{5}$.
i. First, take the natural log of both sides, use laws of logarithms to change the product into a sum and pull down the exponents.
ii. Next, implicitly differentiate everything with respect to x.
iii. Solve for $\frac{d y}{d x}$ and substitute what y equals (from the original function definition) in for y to find the derivative!
(b) Find the derivative of $y=(\sin (x))^{x}$.
i. First, take the natural \log of both sides, and use laws of logarithms to pull the x down from the exponent.
ii. Next, implicitly differentiate everything with respect to x.
iii. Solve for $\frac{d y}{d x}$ and substitute what y equals (from the original function definition) in for y to find the derivative!

Section 3.7 part 1: Rates of Change in the Natural and Social Sciences

2. A stone is thrown in a pond and a circular ripple travels outward at a speed of $60 \mathrm{~cm} / \mathrm{s}$. Determine the rate of change of area inside the ripple at time $t=1$ second and at time $t=2$ seconds. (Hint: draw a picture!)
3. A population of caribou is growing, and its population is

$$
P(t)=4000 \frac{3 e^{t / 5}}{1+2 e^{t / 5}}
$$

(a) What is the population at time $t=0$?
(b) Determine the rate of change of the population at any time t.
(c) Determine the rate of change of the population at time $t=0$ years.
(d) Determine the long term population.

