Section 3.7 Rates of Change in the Natural and Social Sciences

1. A particle moves according to the law of motion $s(t)=2-15 t+4 t^{2}-\frac{1}{3} t^{3}$, for $t \geq 0$, where t is measured in seconds and s is measured in feet.
(a) Find the velocity at time t.
$v(t)=s^{\prime}(t)=-15+8 t-t^{2}$
(b) What is the velocity after 1 second?

$$
v(1)=-15+8-1=-16+8=-8 \quad \leftarrow \text { at } t=1 \text {, velocity }=-8 \mathrm{ft} / \mathrm{s}
$$

(c) When is the particle at rest?

Need $V(t)=0 \Rightarrow-15+8 t-t^{2}=0 \Rightarrow t^{2}-8 t+15=0 \Rightarrow(t-5)(t-3)$
\rightarrow At rest at $t=3 \mathrm{~s} \& \quad t=5 \mathrm{~s}$.

(d) When is the particle moving in the positive direction?
(e) Draw a diagram of the particle from $t=0$ to $t=6$.

$s(0)=2$
$s(b)=-16$
$s(3)=-16$
$S(5)=-\frac{44}{3}=-14^{2} / 3$

(f) Find the displacement of the particle during the first 6 seconds.

(g) Find the total distance traveled by the particle during the first 6 seconds.

Note $|\delta(3)-s(5)|=16-\frac{44}{3}=\frac{48}{3}-\frac{44}{3}=\frac{4}{3}$

So total distance $=18+2\left(\frac{4}{3}\right)=18+8 / 8=20 \%$
total distance
(h) Find the acceleration of the particle.
$a(t)=v^{\prime}(t)=8-2 t$
(i) Graph the acceleration function.

$$
\text { check: } \begin{aligned}
8-2 t=0 & \Rightarrow-2 t=-8 \\
& \Rightarrow t=4
\end{aligned}
$$

(j) When is the particle speeding up?

$$
\begin{aligned}
& \text { That is, whee is the velocity increasing: }(-\infty, 4) \\
& \text { for }(0,4) \text {). }
\end{aligned}
$$

2. The height (in meters) of a projectile shot vertically upward from a point 10 meters above ground lever with an initial velocity of 20 meters per second is $h=10+20 t-4.9 t^{2}$.
(a) When does the projectile reach its maximum height?

$$
\begin{aligned}
& \text { Max height when } v(t)=0 \\
& v(t)=20-4.9(2 t)=0 \Rightarrow \\
& t=\frac{20}{4.9(2)}=\frac{10}{4.9}=\frac{10}{\frac{49}{10}}=\frac{100}{49}
\end{aligned}
$$

(b) What is its maximum height?

$$
\begin{aligned}
h\left(\frac{100}{49}\right) & =10+20\left(\frac{100}{49}\right)-4.9\left(\frac{100}{49}\right)^{2} \\
& =30.408 \text { meters }
\end{aligned}
$$

(c) When does the projectile hit the ground?

$$
\begin{aligned}
& h(t)=0 \Rightarrow 10+20 t-4.9 t^{2}=0 \Rightarrow t=\frac{-20 \pm \sqrt{20^{2}-4(10)(-4.9)}}{2(-4.9)}=\frac{-20 \pm \sqrt{4(100)-4(-49)}}{2(-4.9)} \\
& =\frac{10 \pm \sqrt{149}}{4.9} \Rightarrow t=-0.450 \quad \text { Only the positive value makes sense! } \\
& \text { or } t=4.532 \quad \text { choose } t=4.532
\end{aligned}
$$

(d) what velocity does it hit the ground?

$$
\text { Compute } v(4.532)=20-4.9(2(4.532))=-24.413 \mathrm{~m} / \mathrm{s}
$$

3. A tank holds 1000 gallons of a fluid, which drains from the bottom of the tank in 30 minutes. The function below give the volume of fluid remaining in the tank after t minutes:

$$
V(t)=1000\left(1-\frac{1}{30} t\right)^{2} \text { for } 0 \leq y \leq 30
$$

Find the rate at which the fluid is draining from the tank after 10 minutes. When is the fluid flowing the fastest? Slowest?

$$
\begin{aligned}
& V^{\prime}(t)=1000(2)\left(1-\frac{1}{30} t\right)\left(-\frac{1}{30}\right)=\frac{-200}{3}\left(1-\frac{t}{30}\right) 4 \text { This is a line! } \\
& V^{\prime}(10)=\frac{-200}{3}\left(1-\frac{10}{30}\right)=\frac{-200}{3}\left(\frac{2}{3}\right)=\frac{-400}{9}=-44.44 \mathrm{gal} / \mathrm{min} . \\
& \rightarrow \text { Want max \& min } f\left|V^{\prime}(t)\right| \\
& M a x \text { is }\left|V^{\prime}(0)\right|=\frac{200}{3} \mathrm{~m}^{3} / \mathrm{min} \\
& M \text { Min is }\left|V^{\prime}(30)\right|=0 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

