1. A Ferris wheel with a radius of 13 meters is rotating at a rate of one revolution every three minutes. How fast is a rider rising when her seat is 18 meters above the ground? (Assume the wheel is tangent to the ground at the bottom.) Hint: Label useful things in the diagram sketch.

(a) In terms of the labels given in the picture and calculus-type language:

- What do we KNOW? (Hint: how many radians in one revolution?)
- What do we WANT?
(b) Determine an equation that relates the variables in your WANT and Know.
(c) Solve the related rates problem.
(Hint: use what you know about right-triangle trigonometry! You don't actually need to know the angle from horizontal she's at when she's 18 feet above the ground.)

2. Consider the function $f(x)=x^{3}$.
(a) At the point $x=2$, what is $f(x)$?
$f(2)=$ \qquad
(b) Let $L(x)$ be the function that is the tangent line to $f(x)$ at $x=2$. This tangent line is sometimes called the linearization of $f(x)$ at $x=2$. Finish the equation (you will need to show some work).

$$
L(x)=
$$

\qquad
(c) Observe that the value $x=2.1=2+\frac{1}{10}$ is very close to $x=2$. Evaluate $L(x)$ at $x=2.1$. Do not use a calculator until your very last step (that is you can get a decimal approximation of a fraction, but you should compute the fraction by hand).
$L(2.1)$ as a fraction \qquad $L(2.1)$ as a decimal approximation. \qquad
(d) Use a calculator or a computer to evaluate $f(2.1)$.

$$
f(2.1)=
$$

\qquad
(e) What is the error if you use $L(2.1)$ to approximate $f(2.1)$? (That is, what is the difference between the two quantities?) What is the percent error, calculated as (approx value - actual value)/(actual value)?
(f) Draw a rough sketch of $f(x)$ and $L(x)$, and use the picture and your computations to explain, in a sentence or two, why using $L(2.1)$ to approximate the cube of 2.1 is a reasonable thing to do.

