1. Find all critical points of the function $f(x)=\sin (x)^{1 / 3}$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{3} \sin (x)^{-2 / 3}(\cos (x))=\frac{\cos (x)}{3(\sin (x))^{2 / 3}} \\
& f^{\prime}(x) \text { is undefined whee } \sin (x)=0 \Rightarrow k \pi f o r \\
& k \text { an integer } \\
& f^{\prime}(x)=0 \text { where } \cos (x)=0 \Rightarrow x=\frac{\pi}{2}+2 k \pi \text { or } x=\frac{-\pi}{2}+2 k \pi \\
& \text { for } k \text { an integer } \\
& \text { That is, there are infiritcly many cintical points... }
\end{aligned}
$$

2. Find the absolute maximum and minimum values (y-values) of $f(x)=e^{-x^{2}}$ on the interval $[-2,3]$, and the locations (x-values) where those values are attained.

$$
\begin{aligned}
& \text { Critical points: } f^{\prime}(x)=e^{-x^{2}}(-2 x)=-\frac{2 x}{e^{x^{2}}} \\
& \text { Note } e^{x^{2}}>0 \text { for all } x \text {, so only critical points are woe } \\
& f^{\prime}(x)=0 \Rightarrow e^{-x^{2}}(-2 x)=0 \Rightarrow x=0 \\
& \begin{array}{l|l}
x & f(x) \\
\hline-2 & e^{-2^{2}}=\frac{1}{e^{4}}
\end{array} \\
& 0 \quad e^{-0^{2}}=e^{0}=1 \quad \leftarrow \text { Absolute max, at } x=0 \\
& 3 e^{-3^{2}}=\frac{1}{e^{9}} \longleftrightarrow \text { Absolute min, at } x=3
\end{aligned}
$$

3. A ball thrown in the air at time $t=0$ has a height given by

$$
h(t)=h_{0}+v_{0} t-\frac{1}{2} g_{0} t^{2}
$$

meters where t is measured in seconds, h_{0} is the height at time $0, v_{0}$ is the velocity (in meters per second) at time 0 and g_{0} is the constant acceleration due to gravity (in $\mathrm{m} / \mathrm{s}^{2}$). Assuming $v_{0}>0$, find the time that the ball attains its maximum height. Then find the maximum height.

$$
\begin{aligned}
& h^{\prime}(t)=v_{0}-\frac{1}{2} g_{0}(2 t) \\
& \text { So } h^{\prime}(t)=0 \Rightarrow v_{0}-\frac{1}{2} g_{0}(2 t)=0 \Rightarrow g_{0} t=v_{0} \Rightarrow \\
& t=\frac{v_{0}}{g_{0}} \text { is the only critical point. } \\
& \text { At } t=0 \text {, height }=h_{0} \text {. Observe absolute min is whee } h=0 \text {. } \\
& \text { Evaluate at } \frac{v_{0}}{g_{0}}: h\left(\frac{v_{0}}{g_{0}}\right)=h_{0}+\frac{v_{0}^{2}}{g_{0}}-\frac{1}{2} \cdot g_{0}\left(\frac{v_{0}}{g_{0}}\right)^{2} \\
& =h_{0}+\frac{v_{0}^{2}}{g_{0}}-\frac{v_{0}^{2}}{2 g_{0}}=h_{0}+\frac{2 v_{0}^{2}-v_{0}^{2}}{2 g_{0}}=h_{0}+\frac{v_{0}^{2}}{2 g_{0}}
\end{aligned}
$$

(1) $h(t)$ attains its maximum height at $t=\frac{v_{0}}{g_{0}}$ seconds (2) The maximum height attained is $h(t)=h_{0}+\frac{v_{0}^{2}}{2 g_{0}}$ meters

