SECTION 4.1: MAXIMUM & MINIMUM VALUES f(x) whose domain is the interval [-1, 4] with the following properties:

- (c) f has a critical point at (b) f has an absolute min-(a) *f* is continuous, has a lox = 1 but no maximum or cal minimum at x = 0, an imum but no absolute minimum (of any type) at absolute minimum at x =maximum x = 1.4 and an absolute maximum at x = 2. ν ч 2
- 2. Find the absolute maximum and minimum values of $f(x) = x x^{1/3}$ on the interval [-1, 4]. Determine where those absolute maximum and minimum values occur.

Need to check:) endpoints
e) Critical points: where f' is undefined and where f'=0.
Critical points: f'(x)=1-
$$\frac{1}{8}x^{-2/3} = 1 - \frac{1}{3\sqrt{3}x^2}$$
.
f' is undefined at x=0.
f' =0 where $1 = \frac{1}{3\sqrt{3}x^2} \Rightarrow x^{2/3} = \frac{1}{3} \Rightarrow x^2 = \frac{1}{27} \Rightarrow x = \frac{1}{8\sqrt{3}} = \frac{1}{8\sqrt{3}}$.
 $\approx -0.192 \approx 0.192$

1

$$\frac{4ypc}{endpt} = \frac{\chi}{-1} = \frac{4(\kappa)}{0}$$

$$\frac{1}{2}\frac{1}{3\sqrt{3}} = \frac{2}{3\sqrt{3}} \approx 0.38$$

$$\frac{1}{2}\frac{1}{3\sqrt{3}} = \frac{2}{3\sqrt{3}} \approx -0.38 \quad \text{ABS}$$

$$\frac{1}{2}\frac{1}{3\sqrt{3}} = \frac{-2}{3\sqrt{3}} \approx -0.38 \quad \text{ABS}$$

Answer
•
$$f$$
 has an absolute min. value
of $-\frac{2}{3\sqrt{3}}$ occurring at $X = \frac{1}{3\sqrt{3}}$
• f has an absolute maximum value of
 $4 - 5/4$, occurring at $X = 4$.
• $\frac{2}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$
• $\frac{4}{3\sqrt{3}}$

3. Find the absolute maximum and minimum values of $f(x) = x + \frac{1}{x}$ on the interval [1/5, 4]. Determine where those absolute maximum and minimum values occur.

The where those absolute maximum and minimum values occur.
-D Check endpoints:
$$x = \frac{1}{5}$$
 is $x = 4$. (Note f has \sqrt{A} at $x = 0$ which is outside our domain)
-D Check critical points. \Rightarrow where $f'(x) = 0$ and where $f'(x) = 0$ and where $f'(x)$ is undefined.
 $f'(x) = 1 - \frac{1}{x^2}$. S_2 f' is undefined at $x = 0$ (not in our domain) and
 $f'(x) = 0 \Rightarrow 0 = (-\frac{1}{x^2} \Rightarrow \frac{1}{x^2} = 1 \Rightarrow x^2 = 1 \Rightarrow x = 1$ or $x = -1$. Only $x = 1$ is in our domain.
ABS MAY

$$\frac{x}{\frac{1}{3}} = \frac{1}{3} = \frac{26}{5} = 5.2 + Absolute max, at x = \frac{1}{5} = \frac{2}{5} =$$

4. Find the absolute maximum and minimum values of $f(x) = x^{2/3}$ on the interval [-8, 8]. Determine where those absolute maximum and minimum values occur.

Endpoints:
$$x = -8$$
 and $x = 8$
(ritical points: $f'(x) = \frac{2}{3}x^{-4/3} = \frac{2}{3\sqrt[3]{x^4}}$
• $f'(x)$ is undefined at $x = 0$
• $f'(x) = 0$ never, because $\frac{2}{3\sqrt[3]{x^4}} = 0 \Rightarrow 2 = 0$ which is not the.

$$\frac{x}{(-8)^{4/3}} = (-2)^2 = 4 \quad 4 \rightarrow \text{ Alos Hax e}$$

$$0 \quad 6 \rightarrow \text{ Alos min, at } x = 0$$

$$8 \quad \frac{x}{3} = 2^2 = 4 \quad 4 \rightarrow \text{ Alos Max e}$$

$$x = -8$$
Notice there is only one absolute maximum value, $x = -8$
Notice there is only one absolute maximum value, $x = -8$

$$y = 4, \text{ but it is attained at two different x-values.}$$
Ware is only one absolute minimum value, $y = 0$, attained at $x = 0$ (where it has a cup.)
$$UAF Calculus I$$

$$2$$

$$41$$