1. Sketch a graphs $f(x)$ whose domain is the interval $[-1,4]$ with the following properties:
(a) f is continuous, has a local minimum at $x=0$, an absolute minimum at $x=$ 4 and an absolute maximum at $x=2$.

(b) f has an absolute minimam but no absolute maximum

(c) f has a critical point at $x=1$ but no maximum or minimum (of any type) at $x=1$.

2. Find the absolute maximum and minimum values of $f(x)=x-x^{1 / 3}$ on the interval $[-1,4]$. Determing where those absolute maximum and minimum values occur.

Need to check:1) endpoints
2) Critical points: where f^{\prime} is undefined and whee $f^{\prime}=0$. Critical points: $f^{\prime}(x)=1-\frac{1}{8} x^{-2 / 3}=1-\frac{1}{3 \sqrt[3]{x^{2}}}$.
f^{\prime} is undefined at $x=0$.
$f^{\prime}=0$ where $1=\frac{1}{3 \sqrt[3]{x^{2}}} \Rightarrow x^{2 / 3}=1 / 3 \Rightarrow x^{2}=\frac{1}{27} \Rightarrow x=\frac{-1}{3 \sqrt{3}}-x=\frac{1}{3 \sqrt{3}}$.

type	x	$f(x)$
endpt	-1	0
crit.pt	$\frac{-1}{3 \sqrt{3}}$	$\frac{2}{3 \sqrt{3}} \approx 0.38$
crit pt	0	0
crit pt	$\frac{1}{3 \sqrt{3}}$	$\frac{-2}{3 \sqrt{3}} \approx-0.38 \& 4$ MIN
endpt	4	$4-\sqrt[3]{4} \approx 2.4164$ ABS

Answer

- f has an absolute min. value

$$
\text { of } \frac{-2}{3 \sqrt{3}} \text { occuring al } x=\frac{1}{3 \sqrt{3}}
$$

- f has an absolute maximum value of

3. Find the absolute maximum and minimum values of $f(x)=x+\frac{1}{x}$ on the interval $[1 / 5,4]$. Determine where those absolute maximum and minimum values occur.
\rightarrow Check endpoints: $x=1 / 5 \$ x=4$. (Note f has $V A$ at $x=0$ which is outside our \rightarrow Check critical points. \Rightarrow where
$f^{\prime}(x)=0$ and where $f^{\prime}(x)$ is undefined.
$f^{\prime}(x)=1-\frac{1}{x^{2}}$. So f^{\prime} is undefined at $x=0$ (not in our domain) and $f^{\prime}(x)=0 \Rightarrow 0=1-\frac{1}{x^{2}} \Rightarrow \frac{1}{x^{2}}=1 \Rightarrow x^{2}=1 \Rightarrow x=1$ or $x=-1$. Only $x=1$ is in our domain.

x	$f(x)$
$1 / 5$	$5+1 / 5=\frac{26}{5}=5.2$ \& Absolute max, at $x=1 / 5$
1	$1+1=2=2$ \& Absolute Min, at $x=1$
4	$\frac{1}{4}+4=\frac{17}{4}=4.25$

4. Find the absolute maximum and minimum values of $f(x)=x^{2 / 3}$ on the interval $[-8,8]$. Determine where those absolute maximum and minimum values occur.

Endpoints: $x=-8$ and $x=8$
Critical points: $\quad f^{\prime}(x)=\frac{2}{3} x^{-4 / 3}=\frac{2}{3 \sqrt[3]{x^{4}}}$

- $f^{\prime}(x)$ is unclefined at $x=0$
- $f^{\prime}(x)=0$ never, because $\frac{2}{3 \sqrt[3]{x^{4}}}=0 \Rightarrow 2=0$ which is not true.

Notice there is only one absolute maximum value
 Min $y=4$, but it is attained at two different x-values. There is only one absolute minimum value, $y=0$, attained at $x=0$ (where it turns out the function has a cusp.)

