Section 4-3: How Derivatives Affect the Shape of a Graph, Day 1

1. Consider $f(x)=\frac{2}{3} x^{3}+x^{2}-12 x+7$, and observe $f^{\prime}(x)=2 x^{2}-2 x-12=2(x-2)(x+3)$.
(a) What are the critical points of $f(x)$? (Where does $f^{\prime}(x)=0$?)
(b) Fill in the following table, by evaluating $f^{\prime}(x)$ at "sample points" in the intervals:

x	$x<-3$	-3	$-3<x<2$	2	$x>2$
sample point	-4	-3	0	2	5
sign or value of f^{\prime}					
Increasing/decreasing: f is \nearrow or \searrow					

(c) On what interval(s) is $f(x)$ increasing? \qquad decreasing? \qquad
(d) Use the First Derivative Test to determine where f has a local max and local min (if any):
i. Local max at $x=$ \qquad because f^{\prime} goes from \qquad to \qquad
ii. Local min at $x=$ \qquad because f^{\prime} goes from \qquad to \qquad
(e) It is a fact that $f^{\prime \prime}(x)=4 x-2$, so $f^{\prime \prime}(x)=0$ when $x=$ \qquad
Fill in the expanded chart:

x	$x<-3$	-3	$-3<x<1 / 2$	$1 / 2$	$1 / 2<x<2$	2	$x>2$
sample point	-4	-3	0	$1 / 2$	1	2	5
sign or value of f^{\prime}							
sign or value of $f^{\prime \prime}$							
concavity: f is $\nearrow \backslash \zeta \searrow$							

(f) Use the Second Derivative Test to determine where f has local maxima or minima:
i. Local max at $x=$ \qquad because $f^{\prime}(\ldots)=$ _ and $f^{\prime \prime}(\ldots)$ \qquad
ii. Local max at $x=$ \qquad because $f^{\prime}(—)=$ \qquad and $f^{\prime \prime}(—)$ \qquad
(g) Where does f have an inflection point? $x=$ \qquad How do you know?
(h) Use the information you collected to sketch the graph of $f(x)$. You don't have to be accurate with the y-values, but they should be correct relative to each other. Because $f(0)=7$, you can use that to "nail down" the position of your curve on the graph. Note that

2. Consider $g(x)=x e^{x}$, and note $g^{\prime}(x)=x e^{x}+x=e^{x}(x+1)$ and $g^{\prime \prime}(x)=e^{x}(x+2)$.
(a) What are the critical point(s) of $g(x)$?
(b) Where is g increasing?
(c) Use the First Derivative Test to determine whether g has a local max or min at its critical point.
(d) Use the Second Derivative Test to determine whether g has a local max or min at its critical point.
3. Consider the function $h(x)=x^{3}$ and observe $h^{\prime}(x)=3 x^{2}$ and $h^{\prime \prime}(x)=6 x$.
(a) What are the critical point(s) of $h(x)$?
(b) What happens when you try to use the Second Derivative Test to determine whether h has a local max or min at its critical point?
(c) Make a table of first and second derivatives to determine where h is increasing, decreasing, concave up, and/or concave down. Then sketch h.
4. Consider the function $j(x)=x^{4}$ and observe $j^{\prime}(x)=4 x^{3}$ and $j^{\prime \prime}(x)=12 x^{2}$.
(a) What are the critical point(s) of $j(x)$?
(b) What happens when you try to use the Second Derivative Test to determine whether j has a local max or min at its critical point?
(c) Make a table of first and second derivatives to determine where j is increasing, decreasing, concave up, and/or concave down. Then sketch j.

