Section 4-3: How Derivatives Affect the Shape of a Graph, Day 1

- 1. Consider $f(x) = \frac{2}{3}x^3 + x^2 12x + 7$, and observe $f'(x) = 2x^2 2x 12 = 2(x 2)(x + 3)$.
 - (a) What are the critical points of f(x)? (Where does f'(x) = 0?)
 - (b) Fill in the following table, by evaluating f'(x) at "sample points" in the intervals:

x	x < -3	-3	-3 < x < 2	2	x > 2
sample point	-4	-3	0	2	5
sign or value of f'					
Increasing/decreasing: f is \nearrow or \searrow					

(c) On what interval(s) is f(x) increasing? ______decreasing? ______

(d) Use the First Derivative Test to determine where *f* has a local max and local min (if any):i. Local max at *x* = _____ because *f'* goes from ____ to ____.

ii. Local min at x = _____ because f' goes from ____ to ____

(e) It is a fact that f''(x) = 4x - 2, so f''(x) = 0 when x =______. Fill in the expanded chart:

x	x < -3	-3	-3 < x < 1/2	1/2	1/2 < x < 2	2	x > 2
sample point	-4	-3	0	1/2	1	2	5
sign or value of f'							
sign or value of f''							
concavity: f is $\mathcal{I} \setminus \mathcal{I} \setminus$							

(f) Use the Second Derivative Test to determine where f has local maxima or minima:

i. Local max at x = _____ because $f'(__) =$ ____ and $f''(__)$ _____.

- ii. Local max at x = _____ because $f'(__) =$ ____ and $f''(__)$ _____.
- (g) Where does *f* have an inflection point? *x* =_____ How do you know? _____

(h) Use the information you collected to sketch the graph of f(x). You don't have to be accurate with the *y*-values, but they should be correct relative to each other. Because f(0) = 7, you can use that to "nail down" the position of your curve on the graph. Note that

- 2. Consider $g(x) = xe^x$, and note $g'(x) = xe^x + x = e^x(x+1)$ and $g''(x) = e^x(x+2)$.
 - (a) What are the critical point(s) of g(x)?
 - (b) Where is *g* increasing?
 - (c) Use the First Derivative Test to determine whether *g* has a local max or min at its critical point.

(d) Use the Second Derivative Test to determine whether g has a local max or min at its critical point.

- 3. Consider the function $h(x) = x^3$ and observe $h'(x) = 3x^2$ and h''(x) = 6x.
 - (a) What are the critical point(s) of h(x)?
 - (b) What happens when you try to use the Second Derivative Test to determine whether *h* has a local max or min at its critical point?
 - (c) Make a table of first and second derivatives to determine where h is increasing, decreasing, concave up, and/or concave down. Then sketch h.

- 4. Consider the function $j(x) = x^4$ and observe $j'(x) = 4x^3$ and $j''(x) = 12x^2$.
 - (a) What are the critical point(s) of j(x)?
 - (b) What happens when you try to use the Second Derivative Test to determine whether *j* has a local max or min at its critical point?
 - (c) Make a table of first and second derivatives to determine where *j* is increasing, decreasing, concave up, and/or concave down. Then sketch *j*.