Section 4-3: How Derivatives Affect the Shape of a Graph, Day 2

1. Suppose $f(x)=x^{5}-5 x^{3}$.

Note $f^{\prime}(x)=5 x^{4}-15 x^{2}=5 x^{2}\left(x^{2}-3\right)$ and $f^{\prime \prime}(x)=20 x^{3}-30 x=10 x\left(2 x^{2}-3\right)$.
(a) Find all critical points of $f(x)$.
(b) Determine the open intervals on which f is increasing or decreasing, and classify each critical point as a local minimum, a local maximum, or neither. (Make a table!)
(c) Find the intervals of concavity and the inflection points. (Make a table!)
(d) Put together all this information and sketch the shape of the graph.

- Critical points: $f^{\prime}(x)=0 \Rightarrow x=0$ or $x^{2}=3 \Rightarrow x=\sqrt{3}$ or $x=-\sqrt{3}$. Note $f^{\prime}(x)$ is conts on \mathbb{R} so no other critical points.

Note $4<3<1$

- Possible Inflection points: $f^{\prime \prime}(x)=0 \Rightarrow x=0$ or $2 x^{2}-3=0 \Rightarrow x=\sqrt{\frac{3}{2}}$ or $x=-\sqrt{\frac{3}{2}}$.

Table:	$x<-\sqrt{3} \mid-\sqrt{3}$		$\mid-\sqrt{3 / 2}$			-		$\mid \sqrt{3 / 2}$		$1 \sqrt{3}$			
x			-1	0	1	J/2	3/2		2				
Sample	-2				-3/2		-1	0	$-$	-	2	0	$+$
f^{\prime}	+	0	-	-	-	\bigcirc	\square	-	-				
Incrlber	λ	max	\star	λ	λ		\downarrow	\searrow	\checkmark	Min	-		
$f^{\prime \prime}$	-	-	-	\bigcirc	+	0	-	0	,	U			
concarity	\wedge	\wedge	\bigcirc	INF	\checkmark	InF\|	\sim	INF	\checkmark	U	v		

$f^{\prime \prime}(x)=10 x\left(2 x^{2}-3\right)$
$f^{\prime \prime}(-2)=10(-2)(8-3)=10(-)(+1)$
$f^{\prime \prime}(-1)=10(-1)(2-3)=10(-)(-)$
$f^{\prime \prime}(1)=10(1)(2-3)=10(+x-)$
$f^{\prime \prime}(2)=10(2)(8-3)=10(+)(+)$

$1<\sqrt{3 / 2}<0$
3. Below are the graphs of the FIRST DERIVATIVE, $f^{\prime}(x)$, and the SECOND DERIVATIVE, $f^{\prime \prime}(x)$, of some unknown function f. Note that $f^{\prime}(x)$ is the solid curve and $f^{\prime \prime}(x)$ is the dashed curve. (Assume the domain of all the functions is $(-\infty, \infty)$ and that the functions continue in the way that they are going outside the area shown.) Identify all the information about $f(x)$ required in the table and then sketch the graph of $f(x)$ on the given axes.

We dort know whee $f(0)$ ts. That's ole.

