SECTION 4.7 APPLIED OPTIMIZATION (DAY 1)

A Framework for Approaching Optimization

- 1. Read the problem two or three times. Draw pictures. Label them. Pick specific numerical examples, to make the problem concrete. Be creative. Try more than just one approach.
- 2. Identify the quantity to be minimized or maximized (and which one... min or max).
- 3. Chose notation and explain what it means.
- 4. Write the thing you want to maximize or minimize as a function of one variable, including a reasonable **domain**.
- 5. Use calculus to answer the question and justify that your answer is correct.
- 1. Why does *justification* matter?

Sometimes the answer you think is a local minimum is actually a local maximum or an inflection point - you need to make sure ejonin found the correct answer to the guestion!

2. Find two positive numbers whose sum is 110 and whose product is a maximum.

Let x and y be my numbers.
We want
$$X+y = 110$$

and we want to maximize xy.
Let $P = xy$. Since $X+y = 110$, $y = 110-x$.
Meximize
Let $P(x) = x(110-x) = 110x - x^2$.
Observe domain is $[0, 110]$.
Critical points: $P'(x) = 110 - 2x$. (Note P'(x) never undefind)
So $P'(x) = 0 \implies 110 - 2x = 0 \implies 110$
 $x = 52$ a max?
 $P''(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so by 2^{nd} driv test since $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$ so $P''(55) < 0$
 $P(x) = -2 < 0$

3. A rancher has 800 feet of fencing with which to enclose three adjacent rectangular corrals. See figure below. What dimensions should be used so that the enclosed area will be a maximum?

- 4. Which points on the graph of $y = 4 x^2$ are closest to the point (0, 2)?
 - Start by drawing the function $y = 4 x^2$ and the point (0, 2), and identify on your picture what you are trying to minimize.
 - Once you have a function that is, you have made it through part (d) of the Framework look at the hint at the bottom of the page.)

HINT: Whenever you are asked to maximize or minimize distance, it is nearly ALWAYS easier to maximize or minimize the square of the distance. Why?