
SECTION 4.8 NEWTON’S METHOD

Newton’s Method is an iterative rule for finding roots.

Given: F (x)
Want: a so that F (a) = 0
Guess: x0 close to a

Plug in and Repeat:
newX = oldX - F(oldX)/F’(oldX)
In math language:

xk+1 = xk �
F (xk)

F 0(xk)

1. Let F (x) = x2 � 2.

(a) Using elementary algebra, find a such that F (a) = 0. (Find a exactly and find a decimal
approximation with at least 9 decimal places.)

(b) Find a formula for xk+1. Simplify it.

(c) Using an initial guess of x0 = 2, complete 4 iterations of Newton’s method to find x4 and
compare your answer to the one in part (a).
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2. This page is intended to illustrate how Newton’s Method works.

Again, consider the function F (x) = x2 � 2.

(a) Find the linearization L(x) of F (x) at x = 2. Leave your answer in point-slope form.

(b) I’ve graphed F (x) for you below. Mark where
p
2 is on this diagram and add to this diagram

the graph of L(x). Use a ruler.

x

y

2

(c) Find the number x1 such that L(x1) = 0.

(d) In the diagram above, label the point x1 on the x-axis.

(e) Let’s do it again! Find the linearization L(x) of F (x) at x = x1.

(f) Add the graph of this new linearization to your diagram above.

(g) Find the number x2 such that L(x2) = 0. Then label the point x = x2 in the diagram.

(h) Compare your numbers for x1 and x2 to those on the previous page. They should be the
same.
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(i) Let’s be a little more systematic. Suppose we have an estimate xk for
p
2.

• Compute F (xk).

• Compute F 0(xk).

• Compute the linearization of F (x) at x = xk.

L(x) =

• Find the number xk+1 such that L(xk+1) = 0. You should try to find as simple an ex-
pression as you can. Compare this to the formula we used on problem 1b from page
1.

3. Try to solve

e�x � x = 0

by hand.

4. Explain why there is a solution between x = 0 and x = 1.

5. Starting with x0 = 1, find an approximation of the solution of e�x � x = 0 to 6 decimal places.
During your computation, keep track of each xk to at least 9 decimal places of accuracy.
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