Section 4.8 Newton's Method

Newton's Method is an iterative rule for finding roots.

Given: $F(x)$
Want: a so that $F(a)=0$
Guess: x_{0} close to a

Plug in and Repeat:

new X = old - $F(o l d X) / F^{\prime}(o l d X)$
In math language:

$$
x_{k+1}=x_{k}-\frac{F\left(x_{k}\right)}{F^{\prime}\left(x_{k}\right)}
$$

1. Let $F(x)=x^{2}-2$.
(a) Using elementary algebra, find a such that $F(a)=0$. (Find a exactly and find a decimal approximation with at least 9 decimal places.)
$x^{2}-2=0 \Rightarrow x=\sqrt{2}$ or $x=-\sqrt{2}$
$\sqrt{2} \approx 1.414213562$
(b) Find a formula for x_{k+1}. Simplify it.

$$
x_{k+1}=x_{k}-\left(\frac{\left(x_{k}\right)^{2}-2}{2 x_{k}}\right)=\frac{2 x_{k}^{2}-x_{k}^{2}+2}{2 x_{k}}=\frac{x_{k}^{2}+2}{2 x_{k}}=\frac{x_{k}}{2}+\frac{1}{x_{k}}
$$

(c) Using an initial guess of $x_{0}=2$, complete 4 iterations of Newton's method to find x_{4} and compare your answer to the one in part (a). 4-work in fractions or using at least 10

$$
x_{0}=2
$$

$$
x_{1}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}=1.5
$$

$$
x_{2}=\frac{3 / 2}{2}+\frac{1}{3 / 2}=\frac{3}{4}+\frac{2}{3}=\frac{9+8}{12}=\frac{17}{12}=1.41666 \ldots
$$

$$
x_{3}=\frac{17 / 12}{2}+\frac{1}{17 / 12}=\frac{17}{24}+\frac{12}{17}=\frac{577}{408}=1.414215686 \quad 5 \text { digits the same! }
$$

$$
x_{4}=\frac{577 / 408}{2}+\frac{1}{577 / 408}=1.414213562 \leftarrow \text { all } 9 \text { digits the same! }
$$

2. This page is intended to illustrate how Newton's Method works.

Again, consider the function $F(x)=x^{2}-2$.
(a) Find the linearization $L(x)$ of $F(x)$ at $x=2$. Leave your answer in point-slope form.

$$
\begin{aligned}
& F^{\prime}(2)=4, F(2)=2 \\
& L(x)=4(x-2)+2
\end{aligned}
$$

(b) I've graphed $F(x)$ for you below. Mark where $\sqrt{2}$ is on this diagram and add to this diagram the graph of $L(x)$. Use a ruler.

(c) Find the number x_{1} such that $L\left(x_{1}\right)=0$.

Solve $4(x-2)+2=0 \Rightarrow 4(x-2)=-2 \Rightarrow x-2=-\frac{1}{2} \Rightarrow x=\frac{3}{2}$
So $x_{1}=\frac{3}{2}=1.5$
(d) In the diagram above, label the point x_{1} on the x-axis.
(e) Let's do it again! Find the linearization $L(x)$ of $F(x)$ at $x=x_{1}$.

$$
\begin{gathered}
F^{\prime}(3 / 2)=2(3 / 2)=3 \text { and } F(3 / 2)=(3 / 2)^{2}-2=\frac{9}{4}-\frac{8}{4}=1 / 4 \\
L(x)=3(x-3 / 2)+1 / 4
\end{gathered}
$$

(f) Add the graph of this new linearization to your diagram above.
(g) Find the number x_{2} such that $L\left(x_{2}\right)=0$. Then label the point $x=x_{2}$ in the diagram.

$$
\begin{aligned}
& \text { Solve } 3(x-3 / 2)+1 / 4=0 \Rightarrow 3(x-3 / 2)=-1 / 4 \Rightarrow x-3 / 2=\frac{-1}{12} \\
& \Rightarrow x=\frac{-1}{12}+\frac{3}{2}=\frac{-1}{12}+\frac{18}{12}=\frac{17}{12}
\end{aligned}
$$

(h) Compare your numbers for x_{1} and x_{2} to those on the previous page. They should be the same. They are the same! Hooray!
(i) Let's be a little more systematic. Suppose we have an estimate x_{k} for $\sqrt{2}$.

- Compute $F\left(x_{k}\right) . \quad F\left(x_{k}\right)=\left(x_{k}\right)^{2}-2$
- Compute $F^{\prime}\left(x_{k}\right) . \quad F^{\prime}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)=2 \boldsymbol{x}_{\boldsymbol{k}}$
- Compute the linearization of $F(x)$ at $x=x_{k}$.

$$
L(x)=2 x_{k}\left(x-x_{k}\right)+\left(x_{k}\right)^{2}-2
$$

- Find the number x_{k+1} such that $L\left(x_{k+1}\right)=0$. You should try to find as simple an expression as you can. Compare this to the formula we used on problem lb from page 1.

Solve $2 x_{k}\left(x-x_{k}\right)+\left(x_{k}\right)^{2}-2=0 \Rightarrow 2 x_{k}\left(x-x_{k}\right)=2-x_{k}^{2}$

$$
\Rightarrow x=x_{k}+\frac{2-\left(x_{k}\right)^{2}}{2 x_{k}}=x_{k}+\frac{1}{x_{k}}-\frac{1}{2}\left(x_{k}\right)=\frac{x_{k}}{2}+\frac{1}{x_{k}}
$$

the same formula!
3. Try to solve

$$
e^{-x}-x=0
$$

by hand.

$$
\begin{aligned}
& \frac{1}{e^{x}}=x \Rightarrow e^{x}=\frac{1}{x} \Rightarrow x=\ln \left(\frac{1}{x}\right) 00 \\
& x e^{x}=1 \Rightarrow \because \text { We don't know how to solve this. }
\end{aligned}
$$

4. Explain why there is a solution between $x=0$ and $x=1$.

$$
\begin{aligned}
& f(x)=e^{-x}-x \Rightarrow f(0)=\frac{1}{e^{0}-0=1} \\
& f(1)=\frac{1}{e}-1<\frac{1}{2}-1=-\frac{1}{2}<0 \quad
\end{aligned} \quad \begin{aligned}
& \text { So by } 1<e<3 \text { so } \frac{1}{2}>\frac{1}{e}>\frac{1}{3} \\
& \\
&
\end{aligned} \quad \begin{aligned}
& \text { Solution to there is a } f(x)=0 \\
& \text { in }(0,1) .
\end{aligned}
$$

5. Starting with $x_{0}=1$, find an approximation of the solution of $e^{-x}-x=0$ to 6 decimal places. During your computation, keep track of each x_{k} to at least 9 decimal places of accuracy.

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=x_{k}-\frac{e^{-x_{k}}-x_{k}}{-e^{-x_{k}}+1}=x_{k}-\left(\frac{1 / e^{x_{k}}-x_{k}}{-1 / e^{-x_{k}}+1}\right) \frac{e^{x_{k}}}{e^{x_{k}}}=x_{k}+\frac{1-x_{k} e^{x_{k}}}{e^{x_{k}}-1}
$$

$$
x_{0}=1
$$

$$
x_{1}=1+\frac{1-e}{e-1}=0.537882842739990
$$

$$
x_{2}=0.56698699140541
$$

$$
x_{3}=0.56714328598912
$$

$$
x_{4}=0.5671 .4329040978 \quad \leftarrow 7 \text { decimals agreement } w / x_{3}
$$

$$
x_{5}=0.56714329040978 \quad 4 \text { lots of decimals agreement } w / x_{4}
$$

