Section 4.8 Newton's Method

Newton's Method is an iterative rule for finding roots.

Given: $F(x)$
Want: a so that $F(a)=0$
Guess: x_{0} close to a

Plug in and Repeat:

newX $=$ oldX - $F(o l d X) / F^{\prime}(o l d X)$
In math language:

$$
x_{k+1}=x_{k}-\frac{F\left(x_{k}\right)}{F^{\prime}\left(x_{k}\right)}
$$

1. Let $F(x)=x^{2}-2$.
(a) Using elementary algebra, find a such that $F(a)=0$. (Find a exactly and find a decimal approximation with at least 9 decimal places.)
(b) Find a formula for x_{k+1}. Simplify it.
(c) Using an initial guess of $x_{0}=2$, complete 4 iterations of Newton's method to find x_{4} and compare your answer to the one in part (a).
2. This page is intended to illustrate how Newton's Method works.

Again, consider the function $F(x)=x^{2}-2$.
(a) Find the linearization $L(x)$ of $F(x)$ at $x=2$. Leave your answer in point-slope form.
(b) I've graphed $F(x)$ for you below. Mark where $\sqrt{2}$ is on this diagram and add to this diagram the graph of $L(x)$. Use a ruler.

(c) Find the number x_{1} such that $L\left(x_{1}\right)=0$.
(d) In the diagram above, label the point x_{1} on the x-axis.
(e) Let's do it again! Find the linearization $L(x)$ of $F(x)$ at $x=x_{1}$.
(f) Add the graph of this new linearization to your diagram above.
(g) Find the number x_{2} such that $L\left(x_{2}\right)=0$. Then label the point $x=x_{2}$ in the diagram.
(h) Compare your numbers for x_{1} and x_{2} to those on the previous page. They should be the same.
(i) Let's be a little more systematic. Suppose we have an estimate x_{k} for $\sqrt{2}$.

- Compute $F\left(x_{k}\right)$.
- Compute $F^{\prime}\left(x_{k}\right)$.
- Compute the linearization of $F(x)$ at $x=x_{k}$.
$L(x)=$
- Find the number x_{k+1} such that $L\left(x_{k+1}\right)=0$. You should try to find as simple an expression as you can. Compare this to the formula we used on problem 1 b from page 1.

3. Try to solve

$$
e^{-x}-x=0
$$

by hand.
4. Explain why there is a solution between $x=0$ and $x=1$.
5. Starting with $x_{0}=1$, find an approximation of the solution of $e^{-x}-x=0$ to 6 decimal places. During your computation, keep track of each x_{k} to at least 9 decimal places of accuracy.

