Newton's Method is an iterative rule for finding roots.

Given: F(x)**Want:** a so that F(a) = 0**Guess:** x_0 close to a Plug in and Repeat: newX = oldX - F(oldX)/F'(oldX) In math language:

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$$

- 1. Let $F(x) = x^2 2$.
 - (a) Using elementary algebra, find *a* such that F(a) = 0. (Find *a* exactly and find a decimal approximation with at least 9 decimal places.)
 - (b) Find a formula for x_{k+1} . Simplify it.
 - (c) Using an initial guess of $x_0 = 2$, complete 4 iterations of Newton's method to find x_4 and compare your answer to the one in part (a).

2. This page is intended to illustrate *how* Newton's Method works.

Again, consider the function $F(x) = x^2 - 2$.

- (a) Find the linearization L(x) of F(x) at x = 2. Leave your answer in point-slope form.
- (b) I've graphed F(x) for you below. Mark where $\sqrt{2}$ is on this diagram and add to this diagram the graph of L(x). Use a ruler.

(c) Find the number x_1 such that $L(x_1) = 0$.

- (d) In the diagram above, label the point x_1 on the *x*-axis.
- (e) Let's do it again! Find the linearization L(x) of F(x) at $x = x_1$.
- (f) Add the graph of this new linearization to your diagram above.
- (g) Find the number x_2 such that $L(x_2) = 0$. Then label the point $x = x_2$ in the diagram.
- (h) Compare your numbers for x_1 and x_2 to those on the previous page. They should be the same.

- (i) Let's be a little more systematic. Suppose we have an estimate x_k for $\sqrt{2}$.
 - Compute $F(x_k)$.
 - Compute $F'(x_k)$.
 - Compute the linearization of F(x) at $x = x_k$.
 - L(x) =
 - Find the number x_{k+1} such that $L(x_{k+1}) = 0$. You should try to find as simple an expression as you can. Compare this to the formula we used on problem 1b from page 1.

3. Try to solve

$$e^{-x} - x = 0$$

by hand.

- 4. Explain why there is a solution between x = 0 and x = 1.
- 5. Starting with $x_0 = 1$, find an approximation of the solution of $e^{-x} x = 0$ to 6 decimal places. During your computation, keep track of each x_k to at least 9 decimal places of accuracy.