SECTION 4.9: ANTIDERIVATIVES

1. Find a particular antiderivative of $f(x) = 9 + x - x^2$.

2. Find all antiderivatives of $f(x) = 9 + x - x^2$.

3. Find an antiderivative of $f(x) = \frac{1}{x^2}$.

4. To find *all* antiderivatives of a function f(x), do you always just add a +C? Explain how to construct a "generic" piecewise function where you're not using just +C to describe *all* antiderivatives.

5. For each of the following functions, find a particular antiderivative.

Function	Antiderivative
x	
x^2	
x^3	
$x^k \ (k \neq -1)$	
$x^{-1} \text{ for } x > 0$	
$x^{-1} \text{ for } x < 0$	
x^{-1} for all x	

Function	Antiderivative
$\sin(x)$	
$\cos(x)$	
e^x	
$1/(1+x^2)$	
$(\sec(x))^2$	
$\sec(x)\tan(x)$	
1	

6. Compute an antiderivative of $f(x) = 15x^{20} + 44x^{10} + 8$

7. Compute an antiderivative of $f(t) = \frac{5 \sec t \tan t}{3} - 4 \sin t - \frac{1}{t} + e^2$

8. Compute an antiderivative of $f(x) = \cos(3x)$.

9. Compute the antiderivative of $f(t)=t^2$ that equals 5 when t=2.