Section 4.9: Antiderivatives

1. Find a particular antiderivative of $f(x)=9+x-x^{2}$.
2. Find all antiderivatives of $f(x)=9+x-x^{2}$.
3. Find an antiderivative of $f(x)=\frac{1}{x^{2}}$.
4. To find all antiderivatives of a function $f(x)$, do you always just add a $+C$? Explain how to construct a "generic" piecewise function where you're not using just $+C$ to describe all antiderivatives.
5. For each of the following functions, find a particular antiderivative.

Function	Antiderivative
x	
x^{2}	
x^{3}	
$x^{k}(k \neq-1)$	
x^{-1} for $x>0$	
x^{-1} for $x<0$	
x^{-1} for all x	

Function	Antiderivative
$\sin (x)$	
$\cos (x)$	
e^{x}	
$1 /\left(1+x^{2}\right)$	
$(\sec (x))^{2}$	
$\sec (x) \tan (x)$	
1	

6. Compute an antiderivative of $f(x)=15 x^{20}+44 x^{10}+8$
7. Compute an antiderivative of $f(t)=\frac{5 \sec t \tan t}{3}-4 \sin t-\frac{1}{t}+e^{2}$
8. Compute an antiderivative of $f(x)=\cos (3 x)$.
9. Compute the antiderivative of $f(t)=t^{2}$ that equals 5 when $t=2$.
