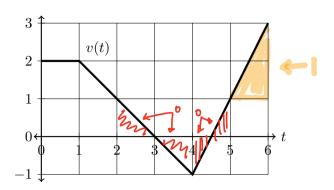

"Area So Far" functions

1. Let f(x) be given by the graph below and define $A(x) = \int_0^x f(t)dt$.

Compute the following using the graph. Hint: $A(1) = \int_0^1 f(x) dx$, which calculates the area accumulated under the graph from x = 0 to x = 1.



What can you say about the **rate of change** of A(x)?

it is always positive

UAF Calculus I

2. A toy car is travelling on a straight track. Its velocity v(t), in meters per second, is given by the graph below. Define s(t) to be the position of the car in meters, and suppose that s(0) = 0. Note that $s(t) = \int_0^t v(x) dx$. (Here, *x* is called the "dummy variable of integration".)

Compute the following:

$s(2) = 3.5$ $s(4) = \underline{3.5}$ $s(6) = \underline{5.5}$
$s(2) = \underbrace{3.5}_{v(2)} = \underbrace{1}_{v(4)} = \underbrace{-1}_{v(6)} = \underbrace{5.5}_{v(6)}$
The <i>t</i> -value in the interval $[0, 6]$ at which $s(t)$ attains its maximum is
The maximum value of $s(t)$ on $[0, 6]$ is 5.5
The <i>t</i> -value in the interval $[0, 6]$ at which $s(t)$ attains its minimum is $\mathcal{L} \cdot \mathcal{I}$
The minimum value of $s(t)$ on $[0, 6]$ is
The <i>t</i> -value in the interval $[0, 6]$ at which $v(t)$ attains its maximum is
The maximum value of $v(t)$ on $[0, 6]$ is
The <i>t</i> -value in the interval $[0, 6]$ at which $v(t)$ attains its minimum is
The minimum value of $v(t)$ on $[0, 6]$ is
Describe the position of the car over the 6 seconds. Moves for ward for 8 seconds,
then moves backwards for 1.5 seconds but does not get back where
it started, then moves froward for the remainder of the time
Describe the velocity of the car over the 6 seconds. positive for 3 seconds but slowing
down, then negative for 1.5 seconds, then is positive
doron, then negative for 1.5 seconds, then is positive for the remaining ti