Section 5.2-3: "Area So Far" functions

"Area So Far" functions

1. Let $f(x)$ be given by the graph below and define $A(x)=\int_{0}^{x} f(t) d t$.

Compute the following using the graph. Hint: $A(1)=\int_{0}^{1} f(x) d x$, which calculates the area accumulated under the graph from $x=0$ to $x=1$.
$A(1)=$ \qquad

$$
f(1)=
$$

$A(2)=$ \qquad
\qquad
\qquad

$$
A(3)=
$$

\qquad $f(3)=$
\qquad

$$
A(4)=
$$

$A(5)=$ \qquad $f(4)=$ \qquad

The x-value in the interval $[0,5]$ at which $A(x)$ attains its maximum is \qquad

The maximum value of $A(x)$ on $[0,5]$ is \qquad

The x-value in the interval $[0,5]$ at which $f(x)$ attains its maximum is \qquad

The maximum value of $f(x)$ on $[0,5]$ is \qquad

What can you say about the rate of change of $A(x)$?
2. A toy car is travelling on a straight track. Its velocity $v(t)$, in meters per second, is given by the graph below. Define $s(t)$ to be the position of the car in meters, and suppose that $s(0)=0$. Note that $s(t)=\int_{0}^{t} v(x) d x$. (Here, x is called the "dummy variable of integration".)

Compute the following:
$s(2)=$ \qquad

$$
s(4)=
$$

\qquad $s(6)=$ \qquad
$v(2)=$ \qquad $v(4)=$ \qquad $v(6)=$ \qquad

The t-value in the interval $[0,6]$ at which $s(t)$ attains its maximum is \qquad
The maximum value of $s(t)$ on $[0,6]$ is \qquad
The t-value in the interval $[0,6]$ at which $s(t)$ attains its minimum is \qquad
The minimum value of $s(t)$ on $[0,6]$ is \qquad
The t-value in the interval $[0,6]$ at which $v(t)$ attains its maximum is \qquad
The maximum value of $v(t)$ on $[0,6]$ is \qquad
The t-value in the interval $[0,6]$ at which $v(t)$ attains its minimum is \qquad
The minimum value of $v(t)$ on $[0,6]$ is \qquad
Describe the position of the car over the 6 seconds. \qquad
\qquad
\qquad
Describe the velocity of the car over the 6 seconds. \qquad
\qquad
\qquad

