Section 5-3: The Fundamental Theorem of Calculus, Part 1

1. Suppose f is the function whose graph is shown and that $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find the values of $g(0), g(1), g(2), g(3), g(4), g(5)$, and $g(6)$. Then, sketch a rough graph of g.
\qquad Area of circle w/radilus
(a) $g(0)=\square$ 1 is π Sketch of $g(x)$
(b) $g(1)=$ \qquad
(c) $g(2)=$ \qquad
(d) $g(3)=$
(e) $g(4)=4-\pi / 4 \approx 3.21$

(f) $g(5)=4-\pi / 2 \approx 2.42$
(g) $g(6)=4-\pi / 2+1 / 2 \approx 2.92$
(i) Where is $g(x)$ increasing? $(0,3) \cup(5,6)$
(ii) Describe f when $g(x)$ is increasing. Positive
(iii) Where is $g(x)$ decreasing? $(3,5)$
(iv) Describe f when $g(x)$ is decreasing. negative
(v) Where does $g(x)$ have a local maximum? $\quad \mathrm{X}=3$
(vi) Describe f when $g(x)$ has a local max. $f(x)=0$ and f goes from + to -
(vii) Where does $g(x)$ have a local minimum? $X=5$
(viii) Describe f when $g(x)$ has a local min. $f(x)=0$ and f goes from - to +
(b) Make a guess: what is the relationship between $g(x)$ and $f(x)$?

$$
f(x)=g^{\prime}(x)
$$

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
2. Find the derivative of $g(x)=\int_{2}^{x} t^{2} d t$.

$$
g^{\prime}(x)=x^{2} \quad \& \text { careful of your variable name! }
$$

3. The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

$$
S^{\prime}(x)=\sin \left(\frac{\pi x^{2}}{2}\right)
$$

4. Consider $g(x)=\int_{1}^{x^{4}} \sec t d t$.

Let $u=x^{4}$ and $h(x)=\int_{1}^{x} \sec t d t$.
(a) Write $g(x)$ as a composition.
$u=x^{4}$, 80
$g(x)=h(u(x))$.
Note $h^{\prime}(\omega)=\sec (u)$ by FTC 1.
5. Consider $g(x)=\int_{2 x+1}^{2} \sqrt{t} d t$.
(a) Write $g(x)$ as a composition.
$U=2 x+1, \quad h(u)=-\int_{2} \sqrt{t} d t$
So $g(x)=h(u(x))$
Notice we flipped the integral when defining h_{x} because FTC 1 says if $g(x)=\int_{a}^{x} f(t) d t$ then $g^{\prime}(x)=f(x)$.
(b) Use FTC1 and the chain rule to differentiate $g(x)$.
So

$$
\begin{aligned}
& g^{\prime}(x)=h^{\prime}(u) \cdot \frac{d u}{d x} \\
& =\sec \left(x^{4}\right) \cdot 4 x^{3}
\end{aligned}
$$

$$
\begin{gathered}
\text { So } g(x)=h(u(x)) \text { and } \\
g^{\prime}(x)=h^{\prime}(u) \cdot \frac{d u}{d x} \\
=(\sqrt{2 x+1})(2)
\end{gathered}
$$

6. Consider the function $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$. Observe that

$$
\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t=\int_{\tan x}^{0} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{0}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t
$$

Use properties of definite integrals, FTC1, and the chain rule to determine $g^{\prime}(x)$. Let $u=\tan (k)$,
$g(x)=-\int_{0}^{\tan x} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{0}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t=-\int_{0}^{u} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{0}^{v} \frac{1}{\sqrt{2+t^{4}}} d t \Rightarrow$
$g^{\prime}(x)=-\frac{1}{\sqrt{2+u^{4}}} \frac{d u}{d x}+\frac{1}{\sqrt{2+v^{4}}} \frac{d v}{d x}=\frac{-(\sec (x))^{2}}{\sqrt{1+(\tan (x))^{4}}}+\frac{2 x}{\sqrt{2+\left(x^{2}\right)^{4}}}$

