Section 5-3: The Fundamental Theorem of Calculus, Part 1

1. Suppose f is the function whose graph is shown and that $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find the values of $g(0), g(1), g(2), g(3), g(4), g(5)$, and $g(6)$. Then, sketch a rough graph of g.
(a) $g(0)=$ \qquad
(b) $g(1)=$ \qquad
(c) $g(2)=$ \qquad
(d) $g(3)=$ \qquad
(e) $g(4)=$ \qquad

(f) $g(5)=$ \qquad
(g) $g(6)=$ \qquad
Sketch of $g(x)$

(i) Where is $g(x)$ increasing?
(ii) Describe f when $g(x)$ is increasing. \qquad
(iii) Where is $g(x)$ decreasing?
(iv) Describe f when $g(x)$ is decreasing. \qquad
(v) Where does $g(x)$ have a local maximum? \qquad
(vi) Describe f when $g(x)$ has a local max.
(vii) Where does $g(x)$ have a local minimum? \qquad
(viii) Describe f when $g(x)$ has a local min.
(b) Make a guess: what is the relationship between $g(x)$ and $f(x)$?

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
2. Find the derivative of $g(x)=\int_{2}^{x} t^{2} d t$.
3. The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.
4. Consider $g(x)=\int_{1}^{x^{4}} \sec t d t$.

Let $u=x^{4}$ and $h(x)=\int_{1}^{x} \sec t d t$.
(a) Write $g(x)$ as a composition.
(b) Use FTC1 and the chain rule to differentiate $g(x)$.
5. Consider $g(x)=\int_{2 x+1}^{2} \sqrt{t} d t$.
(a) Write $g(x)$ as a composition.
6. Consider the function $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$. Observe that

$$
\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t=\int_{\tan x}^{0} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{0}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t
$$

Use properties of definite integrals, FTC 1 , and the chain rule to determine $g^{\prime}(x)$.

