SEction 5-4: Indefinite Integrals and the Net Change Theorem

1. Compute $\int x^{2}(3-x) d x$
$=\int 3 x^{2}-x^{3} d x=\frac{3 x^{3}}{3}-\frac{x^{4}}{4}+C$
2. Compute $\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x$
$=9 x^{3 / 2} \cdot \frac{2}{3}-3(\sec (x))^{2}+c$
3. Snow is falling on my garden at a rate of

$$
A(t)=10 e^{-2 t}
$$

kilograms per hour for $0 \leq t \leq 2$, where t is measured in hours.
(a) Find $A(1)$ and interpret in the context of the problem. $A(1)=10 e^{-2(1)}=\frac{10}{e^{2}} \approx 1.35$ At one hour, the snow is falling of
a rate of $\frac{10}{e^{2}} \approx 1.35$ kilograms/hour
(b) If $m(t)$ is the total mass of snow on my garden, how are $m(t)$ and $A(t)$ related to each other?

$$
m(t)=\text { initial mass of snow }+\int_{0}^{t} A(x) d x
$$

$A(t)$ is the derivative of $m(t)$ at least for $0 \leq t \leq 2$
(c) What does $m(2)-m(0)$ represent?

The total snow accumulation over the 2 hours
(d) Find an antiderivative of $A(t)$.

$$
\int A(t) d t=\frac{10 e^{-2 t}}{-2}+c \quad \text { Find an antiderivative of } A(t) . \quad \text { Check: } \frac{d}{d t}\left(\frac{10 e^{-2 t}}{-2}\right)=-\frac{10}{2} e^{-2 t}(-2)=-10 e^{-2 t}
$$

(e) Compute the total amount of snow accumulation from $t=0$ to $t=1$.

$$
\int_{0}^{1} A(t) d t=-\left.5 e^{-2 t}\right|_{0} ^{1}=-5 e^{-2}-\left(-5 e^{0}\right)=\frac{-5}{e^{2}}+5 \approx 4.32 \mathrm{~kg}
$$

(f) Compute the total amount of snow accumulation from $t=0$ to $t=2$.

$$
\int_{0}^{2} A(t) d t=-\left.5 e^{-2 t}\right|_{0} ^{2}=5-\frac{5}{e^{4}} \approx 4.90 \mathrm{~kg}
$$

(g) From the information given so far, can you compute $m(2)$?

No! I have no iclea how much snow mass was already on my garden.
(h) Suppose $m(0)=9$. Compute $m(1)$ and $m(2)$.

$$
\begin{aligned}
& m(1)=9+5-\frac{5}{e^{2}}=14-\frac{5}{e^{2}} \\
& m(2)=9+5-\frac{5}{e^{4}}=
\end{aligned}
$$

4. A airplane is descending. Its rate of change of height is $r(t)=-4 t+\frac{t^{2}}{10}$ meters per second.
(a) if $A(t)$ is the altitude of the airplane in meters, how are $A(t)$ and $r(t)$ related? $r(t)$ is the derivative of $A(t)$
(b) What physical quantity does $\int_{1}^{3} r(t) d t$ represent?

The change in height from $t=1$ to $t=3$ (that is, $\int_{1}^{3} r(t) d t=A(3)-A(1)$
(c) Compute $A(3)-A(1)$.

$$
\begin{aligned}
& \int r(t) d t=-\frac{4 t^{2}}{2}+\frac{t^{3}}{3 \cdot 10}=-2 t^{2}+\frac{t^{3}}{30} \\
& A(3)-A(1)=\left(-2(9)+\frac{27}{30}\right)-\left(-2+\frac{1}{30}\right)=-16+\frac{26}{30}=-16+\frac{13}{15} \approx-15.13
\end{aligned}
$$

(d) Can we determine the height of the plane when $t=3$? If so, determine it; if not, explain why. No, we dorit know how high it was at $t=1$. All we know is that its height decreased lay a bit over 15 meters over the two seconds.
5. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$.

$$
\begin{aligned}
& G(10)-G(0)=\int_{0}^{10} 1+t^{2} d t=t+\left.\frac{t^{3}}{3}\right|_{0} ^{10}=\left(10+\frac{1000}{3}\right)-0 \\
& =\frac{1030}{3} \\
& \text { Over the } 10 \text { minutes, } 343 \% 3 \text { tons of gravel was added to the pile. }
\end{aligned}
$$

