SEction 5-4: Indefinite Integrals and the Net Change Theorem

1. Compute $\int x^{2}(3-x) d x$
2. Compute $\int 9 \sqrt{x}-3 \sec (x) \tan (x) d x$
3. Snow is falling on my garden at a rate of

$$
A(t)=10 e^{-2 t}
$$

kilograms per hour for $0 \leq t \leq 2$, where t is measured in hours.
(a) Find $A(1)$ and interpret in the context of the problem.
(b) If $m(t)$ is the total mass of snow on my garden, how are $m(t)$ and $A(t)$ related to each other?
(c) What does $m(2)-m(0)$ represent?
(d) Find an antiderivative of $A(t)$.
(e) Compute the total amount of snow accumulation from $t=0$ to $t=1$.
(f) Compute the total amount of snow accumulation from $t=0$ to $t=2$.
(g) From the information given so far, can you compute $m(2)$?
(h) Suppose $m(0)=9$. Compute $m(1)$ and $m(2)$.
4. A airplane is descending. Its rate of change of height is $r(t)=-4 t+\frac{t^{2}}{10}$ meters per second.
(a) if $A(t)$ is the altitude of the airplane in meters, how are $A(t)$ and $r(t)$ related?
(b) What physical quantity does $\int_{1}^{3} r(t) d t$ represent?
(c) Compute $A(3)-A(1)$.
(d) Can we determine the height of the plane when $t=3$? If so, determine it; if not, explain why.
5. Gravel is being added to a pile at a rate of rate of $1+t^{2}$ tons per minute for $0 \leq t \leq 10$ minutes. If $G(t)$ is the amount of gravel (in tons) in the pile at time t, compute $G(10)-G(0)$.

