1. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\frac{2}{x}+\ln (x)
$$

a. What is the function's domain?

$$
x>0
$$

b. Does this function have any symmetry?
none
c. Find a few choice values of x to evaluate the function at.

$$
f(1)=2
$$

d. What behaviour occurs for this function at $\pm \infty$?

$$
\lim _{x \rightarrow \infty} \frac{2}{x}+\ln (x)=0+\infty=\infty
$$

$$
\stackrel{\infty}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}
$$

$$
=\lim _{x \rightarrow 0^{+}}-x
$$

e. Does the function have any vertical asymptotes? Where

$$
=0
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{2}{x}+\ln (x)=\lim _{x \rightarrow 0^{+}} \frac{1}{x}[2+x \ln (x)]=\infty[2+0]=\infty
$$

f. Find intervals where f is increasing/decreasing and identify critical points.

$$
f^{\prime}(x)=\frac{-2}{x^{2}}+\frac{1}{x}=\frac{x-2}{x^{2}}
$$

g. Classify each critical point as a local min/max/neither.

$$
x=2 \text { is the location of a local min }
$$

h. Find intervals where f is concave up/concave down and identify points of inflection

2. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=x \sqrt{4-x^{2}}
$$

a. What is the function's domain?

$$
-2 \leqslant x \leqslant 2
$$

b. Does this function have any symmetry?
odd symmetry
c. Find a few choice values of x to evaluate the function at.

$$
f(0)=0, f(\pm 2)=0
$$

d. What behaviour occurs for this function at $\pm \infty$?
not defined rear $\pm \infty$
e. Does the function have any vertical asymptotes? Where?
none
f. Find intervals where f is increasing/decreasing and identify critical points.

$$
\begin{aligned}
& f^{\prime}(x)=\sqrt{4-x^{2}}+\frac{x(-2 x)}{2 \sqrt{4-x^{2}}} \\
& =\frac{4-x^{2}-x^{2}}{\sqrt{4-x^{2}}}=\frac{2\left(2-x^{2}\right)}{\sqrt{4-x^{2}}} \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { lower min } \\
& \uparrow_{\text {loud max }}
\end{aligned}
$$

g. Classify each critical point as a local min/max/neither. see previous 2 .
h. Find intervals where f is concave up/concave down and identify points of inflection

$$
\begin{aligned}
f^{\prime}(x)=\frac{2\left(2-x^{2}\right)}{\sqrt{4-x^{2}}}, f^{\prime \prime}(x) & =2\left[\frac{-2 x \sqrt{4-x^{2}}-\left(2 x^{2}\right) \frac{-x}{4-x^{2}}}{\left(4-x^{2}\right)}\right] \\
& =2\left[\frac{-2 x+x\left[2-x^{2}\right]}{\left(4-x^{2}\right)^{3 / 2}}\right] \\
& =2\left[\frac{-x^{3}}{\left(4-x^{2}\right)^{3 / 2}}\right]
\end{aligned}
$$

i. Sketch the graph of the function

3. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\operatorname{sir}(8 x)
$$

a. What is the function's domain?

b. Does this function have any symmetry?

$$
\text { periodic, periad is no wore than } 2 \pi
$$

c. Find a few choice values of x to evaluate the function at.

$$
\begin{array}{ll}
f(x)=0 & \text { if } x=k \pi \\
f(x)=1 & i \in \mathbb{Z} \\
\end{array}
$$

d. What behaviour occurs for this function at $\pm \infty$?

$$
\lim _{x \rightarrow 2 \infty} f(x) \quad d i 1 \cdot e .
$$

e. Does the function have any vertical asymptotes? Where?
rare
f. Find intervals where f is increasing/decreasing and identify critical points.

g. Classify each critical point as a local min/max/neither.
see prior
h. Find intervals where f is concave up/concave down and identify points of inflection

$$
\begin{aligned}
& f^{\prime \prime}(x)=2\left[\cos ^{2}(x)-\sin ^{2}(x)\right] \\
&=2\left[1-2 \sin ^{2}(x)\right] \\
& f^{\prime \prime}(x)=0 \text { when } \sin (x)=\frac{ \pm 1}{\sqrt{2}} \\
& x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \\
&+\frac{1}{4}=\frac{3 \pi}{4} \frac{5 \pi}{4} \quad \frac{7 \pi}{4}
\end{aligned}
$$

i. Sketch the graph of the function

$$
\left[\text { in } \operatorname{tac}^{2}, \sin ^{2}(x)=\frac{1-\cos (2 x)}{2}\right]
$$

4. Follow the guidelines from the previous worksheet to sketch the graph of

$$
f(x)=\frac{x}{\sqrt{9+x^{2}}}
$$

a. What is the function's domain?

b. Does this function have any symmetry?
odd
c. Find a few choice values of x to evaluate the function at.

$$
f(0)=0
$$

d. What behaviour occurs for this function at $\pm \infty$?
e. Does the function have any vertical asymptotes? Where?

By odd symmetry:

$$
\lim _{x \rightarrow-\infty} f(x)=-1
$$

f. Find intervals where f is increasing/decreasing and identify critical points.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{\sqrt{a+x^{2}}}-\frac{x \cdot(2 x)}{2\left(9+x^{2}\right)^{3 / 2}} \\
& =\frac{9}{\left(9+x^{2}\right)^{3 / 2}}>0
\end{aligned}
$$

g. Classify each critical point as a local min/max/neither.

None
h. Find intervals where f is concave up/concave down and identify points of inflection $f^{\prime \prime}(x)=9\left(\frac{-3}{2}\right)\left(1+2^{-2}\right)^{-5 / 2} \cdot(2 x)$

$$
=-27\left(9+x^{2}\right)^{-5 / 2} x
$$

0

$\operatorname{ronc} 6 \beta$
conc dawn
i. Sketch the graph of the function

