Lecture Notes: §1.3

- 1. Explain what each does to the *original* graph y = f(x). (Assume c > 0.)
 - (a) f(x) + c
 - (b) f(x) c
 - (c) f(x+c)
 - (d) f(x-c)
 - (e) *cf*(*x*)
 - (f) f(cx)
 - (g) -f(x)
 - (h) f(-x)

2. Let $f(x) = \begin{cases} 1 & x \leq 1 \\ 2-x & x > 1 \end{cases}$. Graph each of the following using the ideas from #1 above. (a) f(x)(b) f(x+1)(c) f(2x)(d) -3f(x)

3. Given g(x), graph the transformations of g.

- 4. For f(x) = 1/x and $g(x) = \sin x$, find
 - (a) f + g (d) $g \circ f$
 - (b) 2f g (e) $g \circ g$
 - (c) $f \circ g$ (f) $f \circ f$ and find its domain.
- 5. Given $H(x) = \frac{\sqrt{x}}{1-\sqrt{x}}$, find f and g such that $f \circ g = H$.

- 6. Graph each of the following using transformations.
 - (a) $f(x) = 2 \sin x$ on $[-\pi, 3\pi]$

(b) $f(x) = \cos(x/3)$ (include at least one full cycle)

(c) $f(x) = \tan(x - \pi/2)$ (include at least two full cycles)

(d)
$$f(x) = -\sqrt{x+2}$$

(e)
$$f(x) = \frac{2}{(x-5)^2}$$

(f)
$$f(x) = e^x$$
, $g(x) = e^{x-2}$, $h(x) = e^x - 1$

UAF Calculus 1

§1.3