wees we put table of values on the board on Fri.
Answers we put 2-2 EXAMPLES: CALCULATING LIMITS

1. Use you calculator and a table of values to determine the value of the following limits or state that the limits do not exist.
(a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=\mathbf{2}$
(b) $\lim _{x \rightarrow 3} \frac{4}{(x-3)^{2}}=+\infty$
(c) $\lim _{x \rightarrow 1^{-}} \ln (x-1)=-\infty$
(d) Assume $f(x)= \begin{cases}x+1 & x<0 \\ x-1 & 0 \leq x<2 \\ 1+\sqrt{x-2} & 2<x\end{cases}$
i. $\lim _{x \rightarrow 0} f(x)=\mathbf{D} \boldsymbol{N}$

$$
\lim _{x \rightarrow 0^{+}} x-1=-1 \text { and } \lim _{x \rightarrow 0^{-}} x+1=1
$$

ii. $\lim _{x \rightarrow 2} f(x)=1$
2. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=16$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=4$
(c) $\lim _{x \rightarrow 4} f(x)=$ DNE
(d) $f(4)=10$
(e) $\lim _{x \rightarrow 8} f(x)=5$
(f) $f(8)=5$

5
3. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=\mathbf{+ \infty}$
(b) $\lim _{x \rightarrow 4^{+}} f(x)=-\infty$
(c) $\lim _{x \rightarrow 4} f(x)=$ D NE
(d) $f(4)=$ DNE
(e) $\lim _{x \rightarrow 8} f(x)=\mathbf{O}$
(f) $f(8)=10$

Write the equation of any vertical asymptotes:
4. Determine the limit. Explain your answer.
(a) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{x-5}=+\infty$
(c) $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{e^{x}}{\sin x}=\frac{e^{\pi / 2}}{\sin \left(\frac{\pi}{2}\right)}=\frac{e^{\pi / 2}}{1}$
$x-5 \rightarrow 0$ but is always positive.

$$
=e^{\pi / 2}
$$

(b) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{5-x}=-\infty$

As $x \rightarrow 5^{+}, 2+x \rightarrow 7$
but $5-x \rightarrow 0^{-}$since
$5-x$ is always negative.

