2-5 EXAMPLES

1. State the definition of what it means for a function $f(x)$ to be continuous at $x=c$.

$$
\begin{aligned}
& f(x) \text { is continuous if (1) } f(c) \text { exists, } \\
& \text { (2) } \lim _{x \rightarrow c} f(x) \text { exists, and } \\
& \text { (3) } \lim _{x \rightarrow c} f(x)=f(c)
\end{aligned}
$$

2. Given $h(x)=\left\{\begin{array}{lll}\cos x & x<0 & \bullet \\ \frac{1}{x+1} & 0 \leq x \leq 3 & \bullet \\ e^{x-3} & 3<x & \bullet\end{array}\right.$
(a) Sketch $h(x)$.

(b) Use the definition to show whether or not h is continuous at $x=0$.
h is continuous at $x=0$.
(1) $h(0)=1$
(2) $\lim _{x \rightarrow 0^{-}} h(x)=\lim _{x \rightarrow 0^{-}} \cos 0=1 ; \lim _{x \rightarrow 0^{+}} h(x)=\lim _{x \rightarrow 0^{+}} \frac{1}{x+1}=\frac{1}{0+1}=1$. So $\lim _{x \rightarrow 0} h(x)=1$.
(3) $h(0)=1=\lim _{x \rightarrow 0} h(0)$
(c) Use the definition to show whether or not h is continuous at $x=1$.
h is continuous at $x=1$.
O. $h(1)=\frac{1}{2}$
(2) $\lim _{x \rightarrow 1} h(x)=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}$
(3) $\lim _{x \rightarrow 1} h(x)=\frac{1}{2}=h(1)$.
(d) Use the definition to show whether or not h is continuous at $x=3$.
h is not continuous at $x=3$.
$\lim _{x \rightarrow 3^{-}} h(x)=\frac{1}{x+1}=\frac{1}{4} ; \lim _{x \rightarrow 3^{+}} h(x)=\lim _{x \rightarrow 3^{+}} e^{x-3}=e^{0}=1$,

Since the two onesided limits are different, the $\lim _{x \rightarrow 3} h(x)$ does not

 exist. Since the limit does not exist at $x=3$, the graphis not continuous at $x=3$.3. Use the Intermediate Value Theorem to show that there must be some x value such that $f(x)=x-\ln x=10$.

Since $f(x)=x-\ln x$ is continuous for all $x>0$, the Intermediate Value Theorem applies.
Observe:

$$
\begin{aligned}
& f(1)=1-\ln 1=1<10 \quad \text { and } \\
& f\left(e^{3}\right)=e^{3}-\ln e^{3}=e^{3}-3>10
\end{aligned}
$$

So there is some c in $\left(1, e^{3}\right)$ so that $f(c)=10$.

