2-6 EXAMPLES

1. Evaluate the following limits and justify your answers.
(a) $\lim _{x \rightarrow-\infty} \frac{x+2}{2+x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{1-x^{3}}{x+4 x^{2}}$
(c) $\lim _{x \rightarrow \infty} \frac{3 \sqrt{x}+1}{4 \sqrt{x}-1}$
(d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x+x^{4}}}{2+x^{2}}$
(e) $\lim _{x \rightarrow \infty}\left[\ln \left(x^{2}+\sqrt{2}\right)-\ln \left(3 x^{2}-x\right)\right]$
(f) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{2+8 e^{x}}$
(g) $\lim _{x \rightarrow \infty} x^{-5 / 3} \cos x$
(h) $\lim _{x \rightarrow-\infty} \arctan (2 x)$
2. Sketch the graph of an example of a function f that satisfies all of the given conditions:
(i) $\lim _{x \rightarrow 0} f(x)=-\infty$
(ii) $\lim _{x \rightarrow \infty} f(x)=5$
(ii) $\lim _{x \rightarrow-\infty} f(x)=-2$
3. Let $v(t)=a\left(1-e^{-g t / a}\right)$ where a and g are fixed positive constants.
(a) Determine $\lim _{t \rightarrow \infty} v(t)$ and explain your reasoning.
(b) Assume that $v(t)$ is the velocity of a falling raindrop and g is acceleration due to gravity. How would you interpret your answer to part (a)?
