1. Write two expressions for the slope of the tangent line to the function $f(x)$ at $x=a$. (Hint: Both should involve a limit. One has $x \rightarrow a$ and one has $h \rightarrow 0$. Try to produce the expressions by thinking about where they come from.)

$$
m_{\tan }=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

For all of the problems on this worksheet, you need to use one of the expressions above. You should NOT use a short-cut rule we have not yet covered.
2. For each function and a-value below, i) find the slope of the tangent line to $f(x)$ at $x=a$ and (ii) write the equation of the line tangent to $f(x)$ at $x=a$.
(a) $f(x)=\sqrt{2 x}$ when $a=8$.
(i)

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{\sqrt{2(8+h)}-\sqrt{2 \cdot 8}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{16+2 h}-4}{h} \cdot \frac{\sqrt{16+2 h}+4}{\sqrt{16+2 h}+4} \\
& =\lim _{h \rightarrow 0} \frac{16+2 h-16}{h(\sqrt{16+2 h}+4)}=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{16+2 h}+4)}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{16+2 h}+4}=\frac{2}{8}=\frac{1}{4}
\end{aligned}
$$

(ii) $m=\frac{1}{4}$, point $P=(8,4)$
line: $y-4=\frac{1}{4}(x-8)$ or $y=\frac{1}{4} x+2$
(b) $f(x)=\frac{3}{2-x}$ when $a=1$. $\quad f(a)$
(i)

$$
\begin{aligned}
m & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{3}{2-(1+h)}-\frac{3}{2-1}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{3}{1-h}-\frac{3}{1}\right]=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{3-3(1-h)}{1-h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{3 h}{1-h}\right]=\lim _{h \rightarrow 0} \frac{3}{1-h}=3
\end{aligned}
$$

(ii) $m=3$, point: $(1,3)$
line: $y-3=3(x-1)$ or $y=3 x$

$$
\begin{aligned}
& \text { 3. (a) For } f(x)=2 x-x^{2} \text {, find } f^{\prime}(a) . \\
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{2(a+h)-(a+h)^{2}-\left[2 a-a^{2}\right]}{h} \\
&=\lim _{h \rightarrow 0} \frac{2 a+2 h-a^{2}-2 a h-h^{2}-2 a+a^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 h-2 a h-h^{2}}{h} \\
&=\lim _{h \rightarrow 0} \frac{h(2-2 a-h)}{h}=\lim _{h \rightarrow 0} 2-2 h-h=2-2 a
\end{aligned}
$$

answer: $f^{\prime}(a)=2-2 a$
(b) Find $f^{\prime}(0), f^{\prime}(1), f^{\prime}(2)$ and $f^{\prime}(3)$. (You could just make a table of values...)

x	0	1	2	3
$f^{\prime}(x)$	2	0	-2	-4

(c) Do your answers to part (b) seem reasonable? Why or why not?

$$
f(x)=2 x-x^{2}=x(2-x)
$$

Do these seem reason able? Well, yes. The numbers fit with what I know the graph looks like...

