Lecture Notes: Chapters 1 \& 2 Review

Practice Problems:

1. Use the graph of $f(x)$ below to answer the following questions.

(a) Assuming the arrows on the graph indicate a continued curve in that direction, make an educated guess at the domain of the function $f(x)$.
(b) Find all x-values in the domain of $f(x)$ for which $f(x)$
i. fails to be continuous.
ii. fails to be differentiable.
(c) Evaluate the following limits or explain why they do not exist.
(i) $\lim _{x \rightarrow 4^{-}} f(x)=$
(v) $\lim _{x \rightarrow 6} f(x)=$
(ii) $\lim _{x \rightarrow 4^{+}} f(x)=$
(vi) $\lim _{x \rightarrow 7} f(x)=$
(iii) $\lim _{x \rightarrow 4} f(x)=$
(vi) $\lim _{x \rightarrow 8} f(x)=$
(iv) $\lim _{x \rightarrow 5} f(x)=$
(vii) $\lim _{x \rightarrow 8^{-}} f(x)=$
2. Find the horizontal and vertical asymptotes (if any) of the graph of $f(x)=\frac{2 x^{2}}{3 x^{2}+2 x-1}$ and show your answers are correct.
3. Evaluate the following limits. Show your work. Make sure you are writing your mathematics correctly and clearly.
(a) $\lim _{t \rightarrow 2}\left(\frac{t^{2}-4}{t^{3}-3 t+5}\right)^{3}=$
(b) $\lim _{x \rightarrow 4^{-}} \frac{x^{2}+3 x}{x^{2}-x-12}=$
(c) $\lim _{x \rightarrow-3} \frac{x^{2}-4 x}{x^{2}-x-12}=$
(d) $\lim _{h \rightarrow 0} \frac{(h-5)^{2}-25}{h}=$
4. For each function below, determine all the values in the domain of the function for which the function is continuous.
(a) $f(x)= \begin{cases}\frac{3}{x+5} & x<1 \\ \frac{x+1}{2} & 1 \leq x \leq 3 \\ x^{2}-7 & 3<x\end{cases}$
(b) $g(x)=\frac{2^{x}+1}{\sqrt{1-x}}$
5. Find the limit or show that it does not exist.
(a) $\lim _{x \rightarrow-\infty} \frac{2-x}{3 x^{2}-x}=$
(b) $\lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right]=$
(c) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x}{\sqrt{x^{4}+2 x}}$
6. The displacement (in feet) of a particle moving in a straight line is given by $s(t)=9 t-t^{2}$ where t is measured in seconds.
(a) Find the average velocity from $t=1$ to $t=3$ and include units with your answer.
(b) Find the instantaneous velocity of the particle when $t=1$ and include units with your answer.
