3-10
 Review - PAGE A

Let $f(x)=\sqrt{x}$.

1. Find the equation of the line tangent to the curve of $f(x)$ at $x=4$.
2. On the same set of axes, draw a large, reasonably accurate graph of $f(x)$ and its tangent line. Label them.
3. Correct to at least 5 decimal places, find the y-value of the function $f(x)$ when $x=4.1$ and find the y-value of the tangent line when $x=4.1$. Graph and label these points on the axes above.
4. Correct to at least 3 decimal places, determine the change in y when x changes from 4 to 4.1 for the function $f(x)$ and for the tangent line. Sketch these quantities.

Practice Problems (round 1)

1. (a) Without the use of a calculator, find the linear approximation of $f(x)=\sin x$ at $x=0$ and use it to approximate $\sin (0.1)$.
(b) Use a calculator to find $\sin (0.1)$ exactly and compare to your approximation.
2. (a) Find the differential for $y=x^{2}-4 x$.
(b) Use the differential to estimate Δy when $x=3$ and $\Delta x=d x=0.5$. (Don't use a calculator!)
(c) Now use a calculator to find Δy precisely and compare.

New Material - PAGE B

Let $f(x)=\sqrt{x}$.

1. Find the linear approximation of $f(x)$ at $x=4$. [Replace y with $L(x)$.]
2. On the same set of axes, draw a large, reasonably accurate graph of $f(x)$ and linear approximation. Label them.
3. Use the linear approximation of $f(x)$ at $x=4$ to estimate $f(4.1)$. How good is this estimation?
4. Use the differential to estimate Δy when $x=4$ and $\Delta x=d x=0.1$.

Practice Problems (round 2)

1. Use a linear approximation to estimate $\sqrt[3]{124}$.
2. The radius of a circular disk is given at 24 cm with a maximum error in measurement of at most 0.2 cm . Use differentials to estimate the maximum error in the calculated area of the disc. Does this error seem large?
