3-2 WARM-UP

1. Fill in the blanks below:
(a) $\frac{d}{d x}[f(x) \cdot g(x)]=\boldsymbol{f}^{\prime} \cdot \boldsymbol{g}+f \cdot \boldsymbol{g}^{\prime}$
(b) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\boldsymbol{g} \cdot \boldsymbol{f}^{\prime}-f \cdot \boldsymbol{g}^{\prime}}{\boldsymbol{g}^{2}}$
2. Find the derivatives for each function below and compare your methods:

$$
\begin{array}{l|l}
\begin{aligned}
& \text { (a) } f(x)=\frac{20}{\sqrt[3]{x}}=2 x^{-1 / 3} \\
&\left.f^{\prime} x\right)=2\left(\frac{-1}{3}\right) x^{-4 / 3} f^{\prime}= \\
&=\frac{\left(x^{2}+20\right) \cdot 0-20(2 x)}{\left(x^{2}+20\right)^{2}} \\
&=\frac{40 x}{\left(\text { (b) } f(x)=\frac{20}{x^{2}+20}\right.} \\
& \text { (just power rule) }
\end{aligned} & \\
& \text { (requires quotient rule!) }
\end{array}
$$

3. Find the derivatives for each function below and compare your methods:

$$
\begin{aligned}
& \text { (a) } f(x)=20\left(\frac{x-x^{3}}{x^{3 / 5}}\right) \\
& f(x)=20\left(x-x^{3}\right)\left(x^{-3 / 5}\right) \\
& =20\left(x^{2 / 5} x^{12 / 5}\right) \quad f^{\prime}(x)=e^{x}\left(x^{2 / 5}-x\right)+e^{x}\left(\frac{2}{5} x^{2 / 5}-\frac{12}{5} x^{2 / 5}\right) \\
& \begin{aligned}
f^{\prime}(x) & =e^{x}\left(x^{2 / 5}-x^{12 / 5}\right)+e^{x}\left(\frac{2}{5} x^{-3 / 5}-\frac{12}{5} x^{7 / 5}\right) \\
& =e^{x}\left[x^{2 / 5}-x^{12 / 5}+\frac{2}{5} x^{-3 / 5}-\frac{12}{5} x^{2 / 5}\right]
\end{aligned} \\
& \text { (b) } f(x)=e^{x}\left(\frac{x-x^{3}}{x^{3 / 5}}\right)=\mathrm{e}^{\mathrm{X}}\left(\mathrm{X}^{2 / 5}-\mathrm{x}^{12 / 5}\right) \text {. } \\
& f^{\prime}(x)=20\left[\frac{2}{5} x^{-3 / 5}-\frac{12}{5} x^{7 / 5}\right]
\end{aligned}
$$

4. Find the derivative of $f(x)=\frac{x^{2}+1}{x e^{x}} \quad$ (Use Quotient Rule and Product Rule.)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x e^{x}(2 x)-\left(x^{2}+1\right) \frac{d}{d x}\left[x e^{x}\right]}{\left(x e^{x}\right)^{2}} \\
& =\frac{2 x^{2} e^{x}-\left(x^{2}+1\right)\left[x \cdot e^{x}+1 \cdot e^{x}\right]}{\left(x e^{x}\right)^{2}} \\
& =\frac{e^{x}\left[2 x^{2}-\left(x^{2}+1\right)(x+1)\right]}{\left(x e^{x}\right)^{2}} \\
& =\frac{e^{x}\left[2 x^{2}-x^{3}-x^{2}-x-1\right]}{\left(x e^{x}\right)^{2}}=\frac{x^{2}-x^{3}-x-1}{x^{2} e^{x}}
\end{aligned}
$$

5. Assume $s(t)=3 t e^{t}$ gives the position of an object where s is measured in feet and t is measured in seconds. Find $s^{\prime}(1)$ and $s^{\prime \prime}(1)$ and interpret your answers.

$$
\begin{aligned}
& s^{\prime}(t)=3 \cdot e^{t}+3 t e^{t}=3 e^{t}(1+t) \\
& s^{\prime \prime}(t)=3 e^{t}(1+t)+3 e^{t} \cdot 1=3 e^{t}(t+2)
\end{aligned}
$$

$S^{\prime}(1)=3 e(1+1)=6 e \mathrm{ft} / \mathrm{sec}$. This is the velocity of the object at 1 second. $S^{\prime \prime}(1)=3 \cdot e \cdot(1+2)=9 e \mathrm{ft} / \mathrm{sec}^{2}$. This is the acceleration of the object at 1 second.

