3-3 DAY 2

1. Using the fact that $\frac{d}{d x}[\sin x]=\cos x$ and the geometric relationship between $f(x)=\sin x$ and $g(x)=\cos x$, explain why

$$
\text { Know } f(x)=\sin x, f^{\prime}=\cos x .
$$

- shift the picture left

$\cos x$ is $\sin x$ shifted right by $\pi / 2$ units. so the derivative of $\cos x$ ought to be the derivative of $\sin x$ shifted by $\pi / 2$ units

2. Show $\frac{d}{d x}[\tan x]=\sec ^{2} x$ using the Quotient Rule and the derivatives of sine and cosine.

$$
\begin{aligned}
y=\tan x & =\frac{\sin x}{\cos x} \\
y^{\prime}=\frac{\cos x \cdot \cos x-\sin x(-\sin x)}{\cos ^{2} x} & =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=\cos X$
- $\frac{d}{d x}(\cos x)=\frac{-\sin X}{\sec ^{2} X}$
- $\frac{d}{d x}(\tan x)=\operatorname{Sec}^{2} \boldsymbol{X}$
- $\frac{d}{d x}(\csc x)=-\csc x \cot x$
- $\frac{d}{d x}(\sec x)=\frac{\tan x \sec x}{2}$
- $\frac{d}{d x}(\cot x)=-\csc ^{2} x$

3. Find the derivatives of each of the following:

$$
\begin{aligned}
y^{\prime} & =e^{x}(\tan x-\sec x)+e^{x}\left(\sec ^{2} x-\sec x \tan x\right) \\
& =e^{x}\left[\tan x-\sec x+\sec ^{2} x-\sec x \tan x\right]
\end{aligned}
$$

(b) $g(\theta)=\frac{\sin \theta}{\cos \theta+1}$

$$
\begin{aligned}
g^{\prime}(\theta)=\frac{(\cos \theta+1)(\cos \theta)-\sin \theta(-\sin \theta)}{(\cos \theta+1)^{2}}=\frac{\cos ^{2} \theta+\cos \theta+\sin ^{2} \theta}{(\cos \theta+1)^{2}} & =\frac{\cos \theta+1}{(\cos \theta+1)^{2}} \\
& =\frac{1}{\cos \theta+1}
\end{aligned}
$$

4. For what values of t does the graph of $f(t)=t+2 \cos t$ have a horizontal tangent?

$$
\begin{aligned}
& f^{\prime}(t)=1-2 \sin t=0 \quad t=\frac{\pi}{6}+2 \pi k \text { or } \frac{5 \pi}{6}+2 \pi k \\
& \sin t=\frac{1}{2} \\
& s^{2}+2,
\end{aligned}
$$

5. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled down 2 cm past its rest position and then released, it vibrates vertically. The equation of motion is

$$
s=2 \cos t+3 \sin t, \text { for } t \geq 0
$$

where s is measured in centimeters and t is measured in seconds. (We are taking the positive direction to be downward.)
(a) Find $s(0), s^{\prime}(0)$, and $s^{\prime \prime}(0)$ including units.

$$
\begin{aligned}
& s^{\prime}(t)=-2 \sin t+3 \cos t \\
& s^{\prime \prime}(t)=-2 \cos t-3 \sin t
\end{aligned}
$$

$$
\begin{aligned}
& s(0)=2 \mathrm{~cm} \\
& s^{\prime}(0)=3 \mathrm{~cm} / \mathrm{s} \\
& s^{\prime \prime}(0)=-2 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

(b) What do your answers from part (a) tell you about the mass? Do your answers make sense?
$s(0)=2$ confirms the object starts 2 cm below equilibrium.
$s^{\prime}(0)=3 \mathrm{~cm} / \mathrm{s}$ tells us that the object is released with downward velocity.
$S^{\prime \prime}(0)=-2 \mathrm{~cm} / \mathrm{s}^{2}$ confirms that the spring is pulling up on the object and slowing the object down.

