3-3 Start up

- 1. Use your calculator to evaluate the limits below:
 - (a) $\lim_{x \to 0} \frac{\sin x}{x}$ assuming x is in radians
 - (b) $\lim_{x \to 0} \frac{\sin x}{x}$ assuming x is in degrees
 - (c) $\lim_{x \to 0} \frac{\cos x 1}{x}$ assuming x is in radians
- 2. You are going to establish the derivative of $f(x) = \sin x$.
 - (a) Start by applying the definition of the derivative to $f(x) = \sin x$. (The definition with the limit and the little *h*.)
 - (b) There is a trig identity: $\sin(a+b) = \sin a \cos b + \sin b \cos a$. Use this identity to rewrite the term $\sin(x+h)$.

(c) Collect the terms with $\sin x$ together and any terms with $\cos x$. Once you have done this, see if you can use the limits from part 1 to evaluate the limit and find the derivative of $\sin x$.

- 3. Does it matter whether you use degrees or radians to find the derivative of $f(x) = \sin x$?
- 4. For $f(x) = \sin x$, sketch f(x) and f'(x) on the same axes and check the "reasonableness" of your answer.

5. Use the fact that you know the derivative of $y = \sin x$ to find the derivative of $y = \csc x$.